Marginal abatement cost curves for agricultural climate policy: State-of-the art, lessons learnt and future potential

Marginal abatement cost curves for agricultural climate policy: State-of-the art, lessons learnt... Combatting climate change has risen to the top of the international policy discourse. Effective governance necessitates the generation of concise information on the costs-effectiveness of policy instruments aimed at reducing atmospheric greenhouse gas (GHG) emissions. The marginal abatement cost curve (MACC) approach is a framework commonly used to summarise information of potential mitigation effort, and can help in identifying the most cost-effective managerial and technological GHG mitigation options.Agriculture offers key opportunities to mitigate GHG emissions and utilise carbon (C) sink potentials. Therefore, a number of countries have developed national agricultural MACCs in the last decade. Whilst these MACCs have undoubtedly been catalysers for the information exchange between science and policy, they have also accentuated a range of constraints and limitations. In response, each of the scientific teams developed solutions in an attempt to address one or more of these limitations. These solutions represent ‘lessons learned’ which are invaluable for the development of future MACCs.To consolidate and harness this knowledge that has heretofore been dispersed across countries, this paper reviews the engineering agricultural MACCs developed in European countries. We collate the state-of-the-art, review the lessons learnt, and provide a more coherent framework for countries or research groups embarking on a trajectory to develop an agricultural MACC that assesses mitigations both within the farm gate and to the wider bioeconomy. We highlight the contemporary methodological developments, specifically on 1) the emergence of stratified MACCs; 2) accounting for soil carbon sequestration 3) accounting for upstream and downstream emissions; 4) the development of comprehensive cost-calculations; 5) accounting for environmental co-effects and 6) uncertainty analyses. We subsequently discuss how the mitigation potential summarised by MACCs can be incentivised in practice and how this mitigation can be captured in national inventories.We conclude that the main purpose of engineering MACCs is not necessarily the accurate prediction of the total abatement potential and associated costs, but rather the provision of a coherent forum for the complex discussions surrounding agricultural GHG mitigation, and to visualise opportunities and low-hanging fruit in a single graphic and manuscript. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Cleaner Production Elsevier

Marginal abatement cost curves for agricultural climate policy: State-of-the art, lessons learnt and future potential

Loading next page...
 
/lp/elsevier/marginal-abatement-cost-curves-for-agricultural-climate-policy-state-1FvbQz0TJ2
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0959-6526
D.O.I.
10.1016/j.jclepro.2018.01.252
Publisher site
See Article on Publisher Site

Abstract

Combatting climate change has risen to the top of the international policy discourse. Effective governance necessitates the generation of concise information on the costs-effectiveness of policy instruments aimed at reducing atmospheric greenhouse gas (GHG) emissions. The marginal abatement cost curve (MACC) approach is a framework commonly used to summarise information of potential mitigation effort, and can help in identifying the most cost-effective managerial and technological GHG mitigation options.Agriculture offers key opportunities to mitigate GHG emissions and utilise carbon (C) sink potentials. Therefore, a number of countries have developed national agricultural MACCs in the last decade. Whilst these MACCs have undoubtedly been catalysers for the information exchange between science and policy, they have also accentuated a range of constraints and limitations. In response, each of the scientific teams developed solutions in an attempt to address one or more of these limitations. These solutions represent ‘lessons learned’ which are invaluable for the development of future MACCs.To consolidate and harness this knowledge that has heretofore been dispersed across countries, this paper reviews the engineering agricultural MACCs developed in European countries. We collate the state-of-the-art, review the lessons learnt, and provide a more coherent framework for countries or research groups embarking on a trajectory to develop an agricultural MACC that assesses mitigations both within the farm gate and to the wider bioeconomy. We highlight the contemporary methodological developments, specifically on 1) the emergence of stratified MACCs; 2) accounting for soil carbon sequestration 3) accounting for upstream and downstream emissions; 4) the development of comprehensive cost-calculations; 5) accounting for environmental co-effects and 6) uncertainty analyses. We subsequently discuss how the mitigation potential summarised by MACCs can be incentivised in practice and how this mitigation can be captured in national inventories.We conclude that the main purpose of engineering MACCs is not necessarily the accurate prediction of the total abatement potential and associated costs, but rather the provision of a coherent forum for the complex discussions surrounding agricultural GHG mitigation, and to visualise opportunities and low-hanging fruit in a single graphic and manuscript.

Journal

Journal of Cleaner ProductionElsevier

Published: May 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off