Manually-operated window shade patterns in office buildings: A critical review

Manually-operated window shade patterns in office buildings: A critical review Despite the significant impact that the position of movable shading devices has on building energy use, peak loads, and visual and thermal comfort, there is a high degree of uncertainty associated with how building occupants actually operate their shades. As a result, unrealistic modeling assumptions in building performance simulation or other design methods may lead to sub-optimal building designs and overestimation or underestimation of cooling loads. In the past 35 years, researchers have published observational studies in order to identify the factors that motivate building occupants to operate shading devices. However, the diversity of the study conditions makes it is difficult to draw universal conclusions that link all contributing factors to shade movement actions. This paper provides a comprehensive and critical review of experimental and study methodologies for manual shade operation in office buildings, their results, and their application to building design and controls. The majority of the many cited factors in office buildings can be categorized into those affecting visual comfort, thermal comfort, privacy, and views. Most office occupants do not operate their shades more than weekly or monthly and they do so based on long-term solar radiation intensity and solar geometry trends rather than reacting to short-term events. They generally operate them to improve visual conditions rather than thermal conditions. Occupants in offices with automatically-controlled heating and cooling tend to be less diligent about using shading devices to improve their comfort. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Building and Environment Elsevier

Manually-operated window shade patterns in office buildings: A critical review

Loading next page...
 
/lp/elsevier/manually-operated-window-shade-patterns-in-office-buildings-a-critical-KFOMLDbVW9
Publisher
Elsevier
Copyright
Copyright © 2012 Elsevier Ltd
ISSN
0360-1323
D.O.I.
10.1016/j.buildenv.2012.10.003
Publisher site
See Article on Publisher Site

Abstract

Despite the significant impact that the position of movable shading devices has on building energy use, peak loads, and visual and thermal comfort, there is a high degree of uncertainty associated with how building occupants actually operate their shades. As a result, unrealistic modeling assumptions in building performance simulation or other design methods may lead to sub-optimal building designs and overestimation or underestimation of cooling loads. In the past 35 years, researchers have published observational studies in order to identify the factors that motivate building occupants to operate shading devices. However, the diversity of the study conditions makes it is difficult to draw universal conclusions that link all contributing factors to shade movement actions. This paper provides a comprehensive and critical review of experimental and study methodologies for manual shade operation in office buildings, their results, and their application to building design and controls. The majority of the many cited factors in office buildings can be categorized into those affecting visual comfort, thermal comfort, privacy, and views. Most office occupants do not operate their shades more than weekly or monthly and they do so based on long-term solar radiation intensity and solar geometry trends rather than reacting to short-term events. They generally operate them to improve visual conditions rather than thermal conditions. Occupants in offices with automatically-controlled heating and cooling tend to be less diligent about using shading devices to improve their comfort.

Journal

Building and EnvironmentElsevier

Published: Feb 1, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off