Mantle transition zone beneath the central Tien Shan: Lithospheric delamination and mantle plumes

Mantle transition zone beneath the central Tien Shan: Lithospheric delamination and mantle plumes We investigate structure of the mantle transition zone (MTZ) under the central Tien Shan in central Asia by using recordings of seismograph stations in Kyrgyzstan, Kazakhstan and adjacent northern China. We apply P-wave receiver functions techniques and evaluate the differential time between the arrivals of seismic phases that are formed by P to SV mode conversion at the 410-km and 660-km seismic boundaries. The differential time is sensitive to the thickness of the MTZ and insensitive to volumetric velocity anomalies above the 410-km boundary. Under part of the southern central Tien Shan with the lowest S wave velocity in the uppermost mantle and the largest thickness of the crust, the thickness of the MTZ increases by 15–20km relative to the ambient mantle and the reference model IASP91. The increased thickness is a likely effect of low (about −150K) temperature. This anomaly is indicative of delamination and sinking of the mantle lithosphere. The low temperature in the MTZ might also be a relic of subduction of the oceanic lithosphere in the Paleozoic, but this scenario requires strong coupling and coherence between structures in the MTZ and in the lithosphere during plate motions in the last 300Myr. Our data reveal a reduction of thickness of the MTZ of 10–15km under the Fergana basin, in the neighborhood of the region of small-scale basaltic volcanism at the time near the Cretaceous-Paleogene boundary. The reduced thickness of the MTZ is the effect of a depressed 410-km discontinuity, similar to that found in many hotspots. This depression suggests a positive temperature anomaly of about 100–150K, consistent with the presence of a thermal mantle plume. A similar depression on the 410-km discontinuity is found underneath the Tarim basin. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Tectonophysics Elsevier

Mantle transition zone beneath the central Tien Shan: Lithospheric delamination and mantle plumes

Loading next page...
 
/lp/elsevier/mantle-transition-zone-beneath-the-central-tien-shan-lithospheric-BKwNzZF9bT
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier B.V.
ISSN
0040-1951
eISSN
1879-3266
D.O.I.
10.1016/j.tecto.2017.12.010
Publisher site
See Article on Publisher Site

Abstract

We investigate structure of the mantle transition zone (MTZ) under the central Tien Shan in central Asia by using recordings of seismograph stations in Kyrgyzstan, Kazakhstan and adjacent northern China. We apply P-wave receiver functions techniques and evaluate the differential time between the arrivals of seismic phases that are formed by P to SV mode conversion at the 410-km and 660-km seismic boundaries. The differential time is sensitive to the thickness of the MTZ and insensitive to volumetric velocity anomalies above the 410-km boundary. Under part of the southern central Tien Shan with the lowest S wave velocity in the uppermost mantle and the largest thickness of the crust, the thickness of the MTZ increases by 15–20km relative to the ambient mantle and the reference model IASP91. The increased thickness is a likely effect of low (about −150K) temperature. This anomaly is indicative of delamination and sinking of the mantle lithosphere. The low temperature in the MTZ might also be a relic of subduction of the oceanic lithosphere in the Paleozoic, but this scenario requires strong coupling and coherence between structures in the MTZ and in the lithosphere during plate motions in the last 300Myr. Our data reveal a reduction of thickness of the MTZ of 10–15km under the Fergana basin, in the neighborhood of the region of small-scale basaltic volcanism at the time near the Cretaceous-Paleogene boundary. The reduced thickness of the MTZ is the effect of a depressed 410-km discontinuity, similar to that found in many hotspots. This depression suggests a positive temperature anomaly of about 100–150K, consistent with the presence of a thermal mantle plume. A similar depression on the 410-km discontinuity is found underneath the Tarim basin.

Journal

TectonophysicsElsevier

Published: Jan 16, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off