Malware classification using self organising feature maps and machine activity data

Malware classification using self organising feature maps and machine activity data In this article we use machine activity metrics to automatically distinguish between malicious and trusted portable executable software samples. The motivation stems from the growth of cyber attacks using techniques that have been employed to surreptitiously deploy Advanced Persistent Threats (APTs). APTs are becoming more sophisticated and able to obfuscate much of their identifiable features through encryption, custom code bases and in-memory execution. Our hypothesis is that we can produce a high degree of accuracy in distinguishing malicious from trusted samples using Machine Learning with features derived from the inescapable footprint left behind on a computer system during execution. This includes CPU, RAM, Swap use and network traffic at a count level of bytes and packets. These features are continuous and allow us to be more flexible with the classification of samples than discrete features such as API calls (which can also be obfuscated) that form the main feature of the extant literature. We use these continuous data and develop a novel classification method using Self Organizing Feature Maps to reduce over fitting during training through the ability to create unsupervised clusters of similar “behaviour” that are subsequently used as features for classification, rather than using the raw data. We compare our method to a set of machine classification methods that have been applied in previous research and demonstrate an increase of between 7.24% and 25.68% in classification accuracy using our method and an unseen dataset over the range of other machine classification methods that have been applied in previous research. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Computers & Security Elsevier

Malware classification using self organising feature maps and machine activity data

Loading next page...
 
/lp/elsevier/malware-classification-using-self-organising-feature-maps-and-machine-5kjDsxna0r
Publisher
Elsevier
Copyright
Copyright © 2017 The Authors
ISSN
0167-4048
D.O.I.
10.1016/j.cose.2017.11.016
Publisher site
See Article on Publisher Site

Abstract

In this article we use machine activity metrics to automatically distinguish between malicious and trusted portable executable software samples. The motivation stems from the growth of cyber attacks using techniques that have been employed to surreptitiously deploy Advanced Persistent Threats (APTs). APTs are becoming more sophisticated and able to obfuscate much of their identifiable features through encryption, custom code bases and in-memory execution. Our hypothesis is that we can produce a high degree of accuracy in distinguishing malicious from trusted samples using Machine Learning with features derived from the inescapable footprint left behind on a computer system during execution. This includes CPU, RAM, Swap use and network traffic at a count level of bytes and packets. These features are continuous and allow us to be more flexible with the classification of samples than discrete features such as API calls (which can also be obfuscated) that form the main feature of the extant literature. We use these continuous data and develop a novel classification method using Self Organizing Feature Maps to reduce over fitting during training through the ability to create unsupervised clusters of similar “behaviour” that are subsequently used as features for classification, rather than using the raw data. We compare our method to a set of machine classification methods that have been applied in previous research and demonstrate an increase of between 7.24% and 25.68% in classification accuracy using our method and an unseen dataset over the range of other machine classification methods that have been applied in previous research.

Journal

Computers & SecurityElsevier

Published: Mar 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off