Maize lethal necrosis disease: Evaluating agronomic and genetic control strategies for Ethiopia and Kenya

Maize lethal necrosis disease: Evaluating agronomic and genetic control strategies for Ethiopia... Maize lethal necrosis disease (MLN) was first diagnosed in eastern Africa in the 2010's and is a big threat to their maize-based agri-food systems with estimated losses amounting to US$261 million in Ethiopia and US$198 million in Kenya. This paper reviews the agronomic and policy options to contain MLN and comparatively analyzes the feasibility of using maize-bean rotations and MLN-tolerant germplasm as key alternative strategies for managing MLN. Results from crop simulation and economic surplus models are used to make assessments on what strategy offers the most realistic MLN control approach given the circumstances of smallholder production in Kenya and Ethiopia. The paper finds that although maize-legume rotations are sound agronomic recommendations and are crucial for long term maize production system viability, their widespread application over large geographic areas for MLN control is economically challenging given that maize is a preferred staple. We conclude that scaling MLN-tolerant germplasm proves highly viable with estimated multiplier benefits of US$245-756 million in Ethiopia and US$195-678 million in Kenya, and benefiting up to 2.1 million people in Ethiopia and 1.2 million in Kenya. Given that the threat of MLN is present and ongoing, the food and economic security of maize-based agrarian economies in eastern Africa will critically depend on the successful mainstreaming of MLN tolerance in their maize seed systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Agricultural Systems Elsevier

Maize lethal necrosis disease: Evaluating agronomic and genetic control strategies for Ethiopia and Kenya

Loading next page...
 
/lp/elsevier/maize-lethal-necrosis-disease-evaluating-agronomic-and-genetic-control-0MR7j1hS2L
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0308-521x
D.O.I.
10.1016/j.agsy.2018.01.016
Publisher site
See Article on Publisher Site

Abstract

Maize lethal necrosis disease (MLN) was first diagnosed in eastern Africa in the 2010's and is a big threat to their maize-based agri-food systems with estimated losses amounting to US$261 million in Ethiopia and US$198 million in Kenya. This paper reviews the agronomic and policy options to contain MLN and comparatively analyzes the feasibility of using maize-bean rotations and MLN-tolerant germplasm as key alternative strategies for managing MLN. Results from crop simulation and economic surplus models are used to make assessments on what strategy offers the most realistic MLN control approach given the circumstances of smallholder production in Kenya and Ethiopia. The paper finds that although maize-legume rotations are sound agronomic recommendations and are crucial for long term maize production system viability, their widespread application over large geographic areas for MLN control is economically challenging given that maize is a preferred staple. We conclude that scaling MLN-tolerant germplasm proves highly viable with estimated multiplier benefits of US$245-756 million in Ethiopia and US$195-678 million in Kenya, and benefiting up to 2.1 million people in Ethiopia and 1.2 million in Kenya. Given that the threat of MLN is present and ongoing, the food and economic security of maize-based agrarian economies in eastern Africa will critically depend on the successful mainstreaming of MLN tolerance in their maize seed systems.

Journal

Agricultural SystemsElsevier

Published: May 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off