Magnetic ordering in the layered oxyselenides Sr2CoO2Ag2Se2 and Ba2CoO2Ag2Se2

Magnetic ordering in the layered oxyselenides Sr2CoO2Ag2Se2 and Ba2CoO2Ag2Se2 The antiferromagnetic structures of Sr2CoO2Ag2Se2 and Ba2CoO2Ag2Se2 are solved using powder neutron diffraction. Both compounds adopt the same magnetic structure, based on a √2a × √2a × c expansion of the nuclear cell with magnetic space group PC42/n (86.72 in the Belov-Neronova-Smirnova notation). This structure is adopted as a result of nearest-neighbour antiferromagnetic interactions within the CoO2 planes. The refined long-range-ordered magnetic moments of Sr2CoO2Ag2Se2 and Ba2CoO2Ag2Se2 are 3.7(1) and 3.97(3) μB per Co ion respectively. The refined moments are significantly greater than the value predicted from just considering the spin (3 μB); this is attributed to a significant orbital contribution to the magnetic moment in an analogous manner to that previously observed for Sr2CoO2Cu2S2 and the values conform to a relationship between the shape of the distended CoO4Ch2 (Ch = S, Se) octahedron and the size of the ordered moment established for a series of related compounds. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Solid State Chemistry Elsevier

Magnetic ordering in the layered oxyselenides Sr2CoO2Ag2Se2 and Ba2CoO2Ag2Se2

Loading next page...
 
/lp/elsevier/magnetic-ordering-in-the-layered-oxyselenides-sr2coo2ag2se2-and-UHcHsglPQ1
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0022-4596
eISSN
1095-726X
D.O.I.
10.1016/j.jssc.2018.05.018
Publisher site
See Article on Publisher Site

Abstract

The antiferromagnetic structures of Sr2CoO2Ag2Se2 and Ba2CoO2Ag2Se2 are solved using powder neutron diffraction. Both compounds adopt the same magnetic structure, based on a √2a × √2a × c expansion of the nuclear cell with magnetic space group PC42/n (86.72 in the Belov-Neronova-Smirnova notation). This structure is adopted as a result of nearest-neighbour antiferromagnetic interactions within the CoO2 planes. The refined long-range-ordered magnetic moments of Sr2CoO2Ag2Se2 and Ba2CoO2Ag2Se2 are 3.7(1) and 3.97(3) μB per Co ion respectively. The refined moments are significantly greater than the value predicted from just considering the spin (3 μB); this is attributed to a significant orbital contribution to the magnetic moment in an analogous manner to that previously observed for Sr2CoO2Cu2S2 and the values conform to a relationship between the shape of the distended CoO4Ch2 (Ch = S, Se) octahedron and the size of the ordered moment established for a series of related compounds.

Journal

Journal of Solid State ChemistryElsevier

Published: Aug 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off