MafB enhances efferocytosis in RAW264.7 macrophages by regulating Axl expression

MafB enhances efferocytosis in RAW264.7 macrophages by regulating Axl expression The transcription factor MafB is involved in cellular differentiation and phagocytosis in macrophages. Macrophages phagocytose apoptotic cells in vivo; this process, which is known as efferocytosis, requires Axl receptor tyrosine kinase (Axl) activity. However, the association between MafB and efferocytosis, as well as that between MafB and Axl, in macrophages is unknown. We hypothesized that MafB modulates macrophage efferocytosis by regulating Axl expression. Fluorescent-labeled apoptotic thymocytes were added to RAW264.7-MafB-shRNA and control cells, and the proportion of phagocytosis-positivey fluorescence microscopy and flow cytometry. In addition, Axl mRNA and protein were quantified by real-time PCR and western blotting in each group. RAW264.7-MafB-shRNA cells were transfected with a plasmid expressing green fluorescent protein (GFP)-tagged Axl or a control empty plasmid expressing only GFP. The capacity for phagocytosis of apoptotic cells was assessed in GFP-positive cells gated based on fluorescence intensity. In RAW264.7-MafB-shRNA cells, capacity for phagocytosis of apoptotic thymocytes was significantly reduced compared with that of control cells, as determined by fluorescence microscope and flow cytometry. Axl mRNA and protein expression was significantly reduced in RAW264.7-MafB-shRNA cells relative to control cells. Furthermore, the capacity of RAW264.7-MafB-shRNA cells, transfected with an Axl-expressing plasmid, for phagocytosis of apoptotic thymocytes was significantly greater than that of cells transfected with the control plasmid. Collectively, the present findings indicate that MafB enhances efferocytosis by regulating Axl expression in RAW264.7 macrophages. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Immunobiology Elsevier

Loading next page...
 
/lp/elsevier/mafb-enhances-efferocytosis-in-raw264-7-macrophages-by-regulating-axl-0v3GE34Fj0
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier GmbH
ISSN
0171-2985
eISSN
1878-3279
D.O.I.
10.1016/j.imbio.2017.10.007
Publisher site
See Article on Publisher Site

Abstract

The transcription factor MafB is involved in cellular differentiation and phagocytosis in macrophages. Macrophages phagocytose apoptotic cells in vivo; this process, which is known as efferocytosis, requires Axl receptor tyrosine kinase (Axl) activity. However, the association between MafB and efferocytosis, as well as that between MafB and Axl, in macrophages is unknown. We hypothesized that MafB modulates macrophage efferocytosis by regulating Axl expression. Fluorescent-labeled apoptotic thymocytes were added to RAW264.7-MafB-shRNA and control cells, and the proportion of phagocytosis-positivey fluorescence microscopy and flow cytometry. In addition, Axl mRNA and protein were quantified by real-time PCR and western blotting in each group. RAW264.7-MafB-shRNA cells were transfected with a plasmid expressing green fluorescent protein (GFP)-tagged Axl or a control empty plasmid expressing only GFP. The capacity for phagocytosis of apoptotic cells was assessed in GFP-positive cells gated based on fluorescence intensity. In RAW264.7-MafB-shRNA cells, capacity for phagocytosis of apoptotic thymocytes was significantly reduced compared with that of control cells, as determined by fluorescence microscope and flow cytometry. Axl mRNA and protein expression was significantly reduced in RAW264.7-MafB-shRNA cells relative to control cells. Furthermore, the capacity of RAW264.7-MafB-shRNA cells, transfected with an Axl-expressing plasmid, for phagocytosis of apoptotic thymocytes was significantly greater than that of cells transfected with the control plasmid. Collectively, the present findings indicate that MafB enhances efferocytosis by regulating Axl expression in RAW264.7 macrophages.

Journal

ImmunobiologyElsevier

Published: Jan 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off