Lysosomal deposition of copper oxide nanoparticles triggers HUVEC cells death

Lysosomal deposition of copper oxide nanoparticles triggers HUVEC cells death The increasing use of copper oxide nanoparticles (CuONPs) has led to major concerns regarding both the predominant physicochemical properties and the potential toxic effects on the environment and human health. The objective of this study is to explore the possible mechanisms underlying the toxicity of CuONPs in vascular endothelial cells. We found that CuONPs induced the cell death in human umbilical vein endothelial cells (HUVECs) through a caspase-independent pathway. Our results also demonstrated that CuONPs were prevalently deposited within lysosomes. The lysosomal deposition of CuONPs led to lysosomal dysfunction, resulting in the impairment of autophagic flux and the accumulation of undegraded autophagosomes. Nevertheless, blockage of the lysosomal deposition of CuONPs could significantly attenuate HUVEC cell death. Interestingly, we found that the inhibition of lysosomal deposition of CuONPs reduced the release of Cu ions, which has been considered as the crucial factor for the toxicity of CuONPs. In summary, our results indicate that the lysosomal deposition of CuONPs (along with the enhanced release of Cu ions form CuONPs) triggers CuONPs-induced HUVEC cell death. Our findings provide an insight into the mechanism of toxicity to the cardiovascular system induced by toxic metal oxide nanoparticles exposure. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biomaterials Elsevier

Lysosomal deposition of copper oxide nanoparticles triggers HUVEC cells death

Loading next page...
 
/lp/elsevier/lysosomal-deposition-of-copper-oxide-nanoparticles-triggers-huvec-n6Hyj0jxei
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0142-9612
D.O.I.
10.1016/j.biomaterials.2018.01.048
Publisher site
See Article on Publisher Site

Abstract

The increasing use of copper oxide nanoparticles (CuONPs) has led to major concerns regarding both the predominant physicochemical properties and the potential toxic effects on the environment and human health. The objective of this study is to explore the possible mechanisms underlying the toxicity of CuONPs in vascular endothelial cells. We found that CuONPs induced the cell death in human umbilical vein endothelial cells (HUVECs) through a caspase-independent pathway. Our results also demonstrated that CuONPs were prevalently deposited within lysosomes. The lysosomal deposition of CuONPs led to lysosomal dysfunction, resulting in the impairment of autophagic flux and the accumulation of undegraded autophagosomes. Nevertheless, blockage of the lysosomal deposition of CuONPs could significantly attenuate HUVEC cell death. Interestingly, we found that the inhibition of lysosomal deposition of CuONPs reduced the release of Cu ions, which has been considered as the crucial factor for the toxicity of CuONPs. In summary, our results indicate that the lysosomal deposition of CuONPs (along with the enhanced release of Cu ions form CuONPs) triggers CuONPs-induced HUVEC cell death. Our findings provide an insight into the mechanism of toxicity to the cardiovascular system induced by toxic metal oxide nanoparticles exposure.

Journal

BiomaterialsElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off