Lower limb articular scaling and body mass estimation in Pliocene and Pleistocene hominins

Lower limb articular scaling and body mass estimation in Pliocene and Pleistocene hominins Previous attempts to estimate body mass in pre-Holocene hominins have relied on prediction equations derived from relatively limited extant samples. Here we derive new equations to predict body mass from femoral head breadth and proximal tibial plateau breadth based on a large and diverse sample of modern humans (avoiding the problems associated with using diaphyseal dimensions and/or cadaveric reference samples). In addition, an adjustment for the relatively small femoral heads of non-Homo taxa is developed based on observed differences in hip to knee joint scaling. Body mass is then estimated for 214 terminal Miocene through Pleistocene hominin specimens. Mean body masses for non-Homo taxa range between 39 and 49 kg (39–45 kg if sex-specific means are averaged), with no consistent temporal trend (6–1.85 Ma). Mean body mass increases in early Homo (2.04–1.77 Ma) to 55–59 kg, and then again dramatically in Homo erectus and later archaic middle Pleistocene Homo, to about 70 kg. The same average body mass is maintained in late Pleistocene archaic Homo and early anatomically modern humans through the early/middle Upper Paleolithic (0.024 Ma), only declining in the late Upper Paleolithic, with regional variation. Sexual dimorphism in body mass is greatest in Australopithecus afarensis (log[male/female] = 1.54), declines in Australopithecus africanus and Paranthropus robustus (log ratio 1.36), and then again in early Homo and middle and late Pleistocene archaic Homo (log ratio 1.20–1.27), although it remains somewhat elevated above that of living and middle/late Pleistocene anatomically modern humans (log ratio about 1.15). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Human Evolution Elsevier

Lower limb articular scaling and body mass estimation in Pliocene and Pleistocene hominins

Loading next page...
 
/lp/elsevier/lower-limb-articular-scaling-and-body-mass-estimation-in-pliocene-and-ZhOPJviW4i
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0047-2484
eISSN
1095-8606
D.O.I.
10.1016/j.jhevol.2017.10.014
Publisher site
See Article on Publisher Site

Abstract

Previous attempts to estimate body mass in pre-Holocene hominins have relied on prediction equations derived from relatively limited extant samples. Here we derive new equations to predict body mass from femoral head breadth and proximal tibial plateau breadth based on a large and diverse sample of modern humans (avoiding the problems associated with using diaphyseal dimensions and/or cadaveric reference samples). In addition, an adjustment for the relatively small femoral heads of non-Homo taxa is developed based on observed differences in hip to knee joint scaling. Body mass is then estimated for 214 terminal Miocene through Pleistocene hominin specimens. Mean body masses for non-Homo taxa range between 39 and 49 kg (39–45 kg if sex-specific means are averaged), with no consistent temporal trend (6–1.85 Ma). Mean body mass increases in early Homo (2.04–1.77 Ma) to 55–59 kg, and then again dramatically in Homo erectus and later archaic middle Pleistocene Homo, to about 70 kg. The same average body mass is maintained in late Pleistocene archaic Homo and early anatomically modern humans through the early/middle Upper Paleolithic (0.024 Ma), only declining in the late Upper Paleolithic, with regional variation. Sexual dimorphism in body mass is greatest in Australopithecus afarensis (log[male/female] = 1.54), declines in Australopithecus africanus and Paranthropus robustus (log ratio 1.36), and then again in early Homo and middle and late Pleistocene archaic Homo (log ratio 1.20–1.27), although it remains somewhat elevated above that of living and middle/late Pleistocene anatomically modern humans (log ratio about 1.15).

Journal

Journal of Human EvolutionElsevier

Published: Feb 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off