Lower fluidity of supported lipid bilayers promotes neuronal differentiation of neural stem cells by enhancing focal adhesion formation

Lower fluidity of supported lipid bilayers promotes neuronal differentiation of neural stem cells... Extensive studies have been performed to understand how the mechanical properties of a stem cell's microenvironment influence its behaviors. Supported lipid bilayers (SLBs), a well-known biomimetic platform, have been used to mimic the dynamic characteristics of the extracellular matrix (ECM) because of their fluidity. However, the effect of the fluidity of SLBs on stem cell fate is unknown. We constructed SLBs with different fluidities to explore the influence of fluidity on the differentiation of neural stem cells (NSCs). The results showed that the behavior of NSCs was highly dependent on the fluidity of SLBs. Low fluidity resulted in enhanced focal adhesion formation, a dense network of stress fibers, stretched and elongated cellular morphology and increased neuronal differentiation, while high fluidity led to less focal adhesion formation, immature stress fibers, round cellular morphology and more astrocyte differentiation. Mechanistic studies revealed that low fluidity may have enhanced focal adhesion formation, which activated FAK-MEK/ERK signaling pathways and ultimately promoted neuronal differentiation of NSCs. This work provides a strategy for manipulating the dynamic matrix surface for the development of culture substrates and tissue-engineered scaffolds, which may aid the understanding of how the dynamic ECM influences stem cell behaviors as well as improve the efficacy of stem cell applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biomaterials Elsevier

Lower fluidity of supported lipid bilayers promotes neuronal differentiation of neural stem cells by enhancing focal adhesion formation

Loading next page...
 
/lp/elsevier/lower-fluidity-of-supported-lipid-bilayers-promotes-neuronal-iHNutWVuwA
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0142-9612
D.O.I.
10.1016/j.biomaterials.2018.01.034
Publisher site
See Article on Publisher Site

Abstract

Extensive studies have been performed to understand how the mechanical properties of a stem cell's microenvironment influence its behaviors. Supported lipid bilayers (SLBs), a well-known biomimetic platform, have been used to mimic the dynamic characteristics of the extracellular matrix (ECM) because of their fluidity. However, the effect of the fluidity of SLBs on stem cell fate is unknown. We constructed SLBs with different fluidities to explore the influence of fluidity on the differentiation of neural stem cells (NSCs). The results showed that the behavior of NSCs was highly dependent on the fluidity of SLBs. Low fluidity resulted in enhanced focal adhesion formation, a dense network of stress fibers, stretched and elongated cellular morphology and increased neuronal differentiation, while high fluidity led to less focal adhesion formation, immature stress fibers, round cellular morphology and more astrocyte differentiation. Mechanistic studies revealed that low fluidity may have enhanced focal adhesion formation, which activated FAK-MEK/ERK signaling pathways and ultimately promoted neuronal differentiation of NSCs. This work provides a strategy for manipulating the dynamic matrix surface for the development of culture substrates and tissue-engineered scaffolds, which may aid the understanding of how the dynamic ECM influences stem cell behaviors as well as improve the efficacy of stem cell applications.

Journal

BiomaterialsElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off