Low temperature effect on impact energy absorption capability of PEEK composites

Low temperature effect on impact energy absorption capability of PEEK composites This paper describes the results of an experimental investigation which analyses the impact behavior at low temperature of polyether–ether–ketone (PEEK) and its short carbon fiber reinforced composite (SCFR PEEK). These polymer materials are widely employed in aeronautical applications subjected to impact loadings in which the energy absorption capability is an aspect that should be taken into account. The energy absorption capability can drastically decrease if temperatures near to the ductile-to-brittle transition temperature of polymeric matrix are reached. In this work, a set of perforation tests has been conducted covering a testing temperature range from −75°C to +25°C and an impact kinetic energy range from 11J to 175J, including typical values considered in impact loadings at aeronautical flight speeds. Energy absorption capability, damage extension and failure mechanisms have been quantified and reported. At low temperatures, a ductile-to-brittle transition was found in PEEK unfilled resulting in a suddenly change of its mechanical impact behavior affecting the energy absorption capability. In case of SCFR PEEK composite, a brittle behavior was observed for the whole temperature range considered and its energy absorption capability decreases drastically at lower temperatures. The brittleness of PEEK and SCFR PEEK at low temperature will limit the application of this composite in aeronautical structures exposed to impact. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Composite Structures Elsevier

Low temperature effect on impact energy absorption capability of PEEK composites

Loading next page...
 
/lp/elsevier/low-temperature-effect-on-impact-energy-absorption-capability-of-peek-1a3Ub1sCvP
Publisher
Elsevier
Copyright
Copyright © 2015 Elsevier Ltd
ISSN
0263-8223
eISSN
1879-1085
D.O.I.
10.1016/j.compstruct.2015.08.090
Publisher site
See Article on Publisher Site

Abstract

This paper describes the results of an experimental investigation which analyses the impact behavior at low temperature of polyether–ether–ketone (PEEK) and its short carbon fiber reinforced composite (SCFR PEEK). These polymer materials are widely employed in aeronautical applications subjected to impact loadings in which the energy absorption capability is an aspect that should be taken into account. The energy absorption capability can drastically decrease if temperatures near to the ductile-to-brittle transition temperature of polymeric matrix are reached. In this work, a set of perforation tests has been conducted covering a testing temperature range from −75°C to +25°C and an impact kinetic energy range from 11J to 175J, including typical values considered in impact loadings at aeronautical flight speeds. Energy absorption capability, damage extension and failure mechanisms have been quantified and reported. At low temperatures, a ductile-to-brittle transition was found in PEEK unfilled resulting in a suddenly change of its mechanical impact behavior affecting the energy absorption capability. In case of SCFR PEEK composite, a brittle behavior was observed for the whole temperature range considered and its energy absorption capability decreases drastically at lower temperatures. The brittleness of PEEK and SCFR PEEK at low temperature will limit the application of this composite in aeronautical structures exposed to impact.

Journal

Composite StructuresElsevier

Published: Dec 15, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off