Long-term phosphorus effects on evolving physicochemical properties of iron and aluminum hydroxides

Long-term phosphorus effects on evolving physicochemical properties of iron and aluminum hydroxides Iron (Fe) and aluminum (Al) hydroxides are highly reactive components in environmental processes, such as contaminant fate and transport. Phosphorus (P) sorption by these components can decrease environmental problems associated with excess accumulation of P in soils. The long-term stability of P sorbed by Fe/Al hydroxides is of major concern. Synthetic Fe and Al hydroxides coprecipitated with P (1:1 metal:P molar ratio) were incubated at 70 °C for 24 months to simulate natural long-term weathering processes that could influence the stability of sorbed P. Heat incubation (70 °C) of the untreated (no P) Al hydroxides resulted in drastic decreases (within the first month of incubation) in oxalate–Al extractability, specific surface area (SSA), and micropore volume with time. These changes were consistent with the formation of pseudoboehmite. Untreated Fe hydroxides showed no formation of crystalline components following heating (70 °C) for 24 months. Much smaller changes in oxalate-Al, P extractability, and SSA values were observed in the P-treated Al particles when compared with the untreated. Phosphorus treatment of both Fe and Al hydroxides stabilized the particle surfaces and prevented structural arrangements toward a long-range ordered phase. Slight reduction in SSA of the P-treated particles was related to dehydration phenomena during heating at 70 °C. Monitoring of physicochemical properties of the solids after heating at 70 °C for 2 years showed that sorbed P may be stable in the long-term. Understanding long term physicochemical properties may help engineers to optimize the Fe/Al hydroxides performance in several environmental/industrial applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Colloid and Interface Science Elsevier

Long-term phosphorus effects on evolving physicochemical properties of iron and aluminum hydroxides

Loading next page...
 
/lp/elsevier/long-term-phosphorus-effects-on-evolving-physicochemical-properties-of-0qA6Q50Icq
Publisher
Elsevier
Copyright
Copyright © 2005 Elsevier Inc.
ISSN
0021-9797
eISSN
1095-7103
D.O.I.
10.1016/j.jcis.2005.02.011
Publisher site
See Article on Publisher Site

Abstract

Iron (Fe) and aluminum (Al) hydroxides are highly reactive components in environmental processes, such as contaminant fate and transport. Phosphorus (P) sorption by these components can decrease environmental problems associated with excess accumulation of P in soils. The long-term stability of P sorbed by Fe/Al hydroxides is of major concern. Synthetic Fe and Al hydroxides coprecipitated with P (1:1 metal:P molar ratio) were incubated at 70 °C for 24 months to simulate natural long-term weathering processes that could influence the stability of sorbed P. Heat incubation (70 °C) of the untreated (no P) Al hydroxides resulted in drastic decreases (within the first month of incubation) in oxalate–Al extractability, specific surface area (SSA), and micropore volume with time. These changes were consistent with the formation of pseudoboehmite. Untreated Fe hydroxides showed no formation of crystalline components following heating (70 °C) for 24 months. Much smaller changes in oxalate-Al, P extractability, and SSA values were observed in the P-treated Al particles when compared with the untreated. Phosphorus treatment of both Fe and Al hydroxides stabilized the particle surfaces and prevented structural arrangements toward a long-range ordered phase. Slight reduction in SSA of the P-treated particles was related to dehydration phenomena during heating at 70 °C. Monitoring of physicochemical properties of the solids after heating at 70 °C for 2 years showed that sorbed P may be stable in the long-term. Understanding long term physicochemical properties may help engineers to optimize the Fe/Al hydroxides performance in several environmental/industrial applications.

Journal

Journal of Colloid and Interface ScienceElsevier

Published: Jul 15, 2005

References

  • J. Colloid Interface Sci.
    Spadini, L.; Manceau, A.; Schindler, P.W.; Charlet, L.
  • Phys. Chem. Chem. Phys.
    Kandori, K.; Ishikawa, T.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off