Long-term consequences of habitat fragmentation—highland birds in Oaxaca, Mexico

Long-term consequences of habitat fragmentation—highland birds in Oaxaca, Mexico Studies of habitat fragmentation have been restricted primarily to anthropogenically-altered habitats, with most research conducted 60–90 years post-fragmentation. It is unclear whether patterns in older systems concur with results from these dynamic landscapes, and hence the long-term viability of populations inhabiting habitat fragments remains largely unexplored. I focused on resident birds in fragments of humid pine-oak forest in Oaxaca, southern Mexico, isolated over 5000 years ago by climate-change. Seventeen fragments, ranging from 2 ha to over 150,000 ha were sampled in 1997 and 1998 yielding 141 species, of which 60 residents were used for analysis. Avian assemblages exhibited a highly nested structure and, with several notable exceptions, assemblages of birds in low-richness fragments were predictable subsets of those in more diverse fragments. Patch-scale factors—area, shape, elevation, habitat diversity and fractal dimension of edge—all exerted strong univariate influence on avian richness but were so closely inter-related that none had a significant independent effect. Thus, larger fragments were more complex in shape, included higher peaks, supported more diverse forests, and contained higher diversities of resident species. In contrast, the landscape-scale index used—distance from nearest large fragment (>50,000 ha)—had little effect on richness. This was reinforced by species-level analyses—one species was significantly influenced by isolation, compared with 31 species that displayed significant minimum-area distributions, restricted to patches larger than a particular threshold value. In terms of autecology, vagility, relative abundance and elevational breadth were closely related to distribution—those species with greater mobility, higher abundances and broader elevational tolerances were consistently more widespread. I suggest that more abundant species were less prone to extinction initially, more vagile species were better dispersers and species with broader elevational tolerances more likely to be successful colonists. As with previous research from older landscapes, patch-scale factors were consistently found to be influential, with high quality fragments supporting diverse communities regardless of landscape context. This suggests that the influence of landscape-scale factors noted in younger, anthropogenically fragmented systems may be transitory, overwhelmed by patch-scale factors with time. Which patch attributes are most influential could not be resolved, however, indicating that even thousands of years after fragmentation, they affect diversity patterns in concert. Rather than differentiating effects of area from habitat heterogeneity and other patch-level factors, I advocate resource-based approaches to understand and manage diversity in habitat fragments. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biological Conservation Elsevier

Long-term consequences of habitat fragmentation—highland birds in Oaxaca, Mexico

Biological Conservation, Volume 111 (3) – Jun 1, 2003

Loading next page...
 
/lp/elsevier/long-term-consequences-of-habitat-fragmentation-highland-birds-in-XybJE2uup6
Publisher
Elsevier
Copyright
Copyright © 2002 Elsevier Science Ltd
ISSN
0006-3207
D.O.I.
10.1016/S0006-3207(02)00271-9
Publisher site
See Article on Publisher Site

Abstract

Studies of habitat fragmentation have been restricted primarily to anthropogenically-altered habitats, with most research conducted 60–90 years post-fragmentation. It is unclear whether patterns in older systems concur with results from these dynamic landscapes, and hence the long-term viability of populations inhabiting habitat fragments remains largely unexplored. I focused on resident birds in fragments of humid pine-oak forest in Oaxaca, southern Mexico, isolated over 5000 years ago by climate-change. Seventeen fragments, ranging from 2 ha to over 150,000 ha were sampled in 1997 and 1998 yielding 141 species, of which 60 residents were used for analysis. Avian assemblages exhibited a highly nested structure and, with several notable exceptions, assemblages of birds in low-richness fragments were predictable subsets of those in more diverse fragments. Patch-scale factors—area, shape, elevation, habitat diversity and fractal dimension of edge—all exerted strong univariate influence on avian richness but were so closely inter-related that none had a significant independent effect. Thus, larger fragments were more complex in shape, included higher peaks, supported more diverse forests, and contained higher diversities of resident species. In contrast, the landscape-scale index used—distance from nearest large fragment (>50,000 ha)—had little effect on richness. This was reinforced by species-level analyses—one species was significantly influenced by isolation, compared with 31 species that displayed significant minimum-area distributions, restricted to patches larger than a particular threshold value. In terms of autecology, vagility, relative abundance and elevational breadth were closely related to distribution—those species with greater mobility, higher abundances and broader elevational tolerances were consistently more widespread. I suggest that more abundant species were less prone to extinction initially, more vagile species were better dispersers and species with broader elevational tolerances more likely to be successful colonists. As with previous research from older landscapes, patch-scale factors were consistently found to be influential, with high quality fragments supporting diverse communities regardless of landscape context. This suggests that the influence of landscape-scale factors noted in younger, anthropogenically fragmented systems may be transitory, overwhelmed by patch-scale factors with time. Which patch attributes are most influential could not be resolved, however, indicating that even thousands of years after fragmentation, they affect diversity patterns in concert. Rather than differentiating effects of area from habitat heterogeneity and other patch-level factors, I advocate resource-based approaches to understand and manage diversity in habitat fragments.

Journal

Biological ConservationElsevier

Published: Jun 1, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off