Long non-coding RNA H19 mediates mechanical tension-induced osteogenesis of bone marrow mesenchymal stem cells via FAK by sponging miR-138

Long non-coding RNA H19 mediates mechanical tension-induced osteogenesis of bone marrow... Bone marrow mesenchymal stem cells (BMMSCs) provide the biological basis for bone reconstruction. Mechanical tension stimulation as a potent modulator is able to promote osteogenic capability of BMMSCs. Long non-coding RNAs (LncRNAs) as competing endogenous RNAs (ceRNAs) for microRNAs, are postulated to regulate the osteogenic differentiation of stem cells. However, the mechanism how (whether) lncRNAs mediates tension-induced osteogenesis of BMSCs still remains poor understood. Here, human BMMSCs (hBMMSCs) were subjected to mechanical tension (10%, 0.5Hz). Results showed that mechanical tension could enhance osteogenic differentiation and increase H19 expression. H19 deficiency suppressed tension-induced osteogenic differentiation, demonstrating that H19 could mediate tension-induced osteogenesis in hBMMSCs. Besides, mechanical tension could suppress miR-138 expression, and down-regulated miR-138 promoted tension-induced osteogenesis in hBMMSCs. Luciferase reporter assays illustrated that H19 had binding sites with miR-138, and H19 deficiency increased miR-138 level, demonstrating that H19 may act as a ceRNA for miR-138 in hBMMSCs. Luciferase reporter assays also showed that miR-138 could target PTK2,a gene encoding focal adhesion kinase (FAK). Up-regulated miR-138 impaired increased FAK expression induced by mechanical tension. The relationship among H19, miR-138 and FAK under tension condition was further studied. H19 deficiency inhibited FAK expression, which could be partly rescued by knock-downing miR-138. In addition, suppressed tension-induced osteogenic differentiation in H19 defective cells was partly rescued by miR-138 knockdown. Taken together, this study indicated that H19 is a positive regulator in tension-induced osteogenesis of hBMMSCs through acting as a ceRNA for miR-138 and then up-regulating downstream FAK. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bone Elsevier

Long non-coding RNA H19 mediates mechanical tension-induced osteogenesis of bone marrow mesenchymal stem cells via FAK by sponging miR-138

Loading next page...
 
/lp/elsevier/long-non-coding-rna-h19-mediates-mechanical-tension-induced-QRd2PwEdNf
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Inc.
ISSN
8756-3282
D.O.I.
10.1016/j.bone.2017.12.013
Publisher site
See Article on Publisher Site

Abstract

Bone marrow mesenchymal stem cells (BMMSCs) provide the biological basis for bone reconstruction. Mechanical tension stimulation as a potent modulator is able to promote osteogenic capability of BMMSCs. Long non-coding RNAs (LncRNAs) as competing endogenous RNAs (ceRNAs) for microRNAs, are postulated to regulate the osteogenic differentiation of stem cells. However, the mechanism how (whether) lncRNAs mediates tension-induced osteogenesis of BMSCs still remains poor understood. Here, human BMMSCs (hBMMSCs) were subjected to mechanical tension (10%, 0.5Hz). Results showed that mechanical tension could enhance osteogenic differentiation and increase H19 expression. H19 deficiency suppressed tension-induced osteogenic differentiation, demonstrating that H19 could mediate tension-induced osteogenesis in hBMMSCs. Besides, mechanical tension could suppress miR-138 expression, and down-regulated miR-138 promoted tension-induced osteogenesis in hBMMSCs. Luciferase reporter assays illustrated that H19 had binding sites with miR-138, and H19 deficiency increased miR-138 level, demonstrating that H19 may act as a ceRNA for miR-138 in hBMMSCs. Luciferase reporter assays also showed that miR-138 could target PTK2,a gene encoding focal adhesion kinase (FAK). Up-regulated miR-138 impaired increased FAK expression induced by mechanical tension. The relationship among H19, miR-138 and FAK under tension condition was further studied. H19 deficiency inhibited FAK expression, which could be partly rescued by knock-downing miR-138. In addition, suppressed tension-induced osteogenic differentiation in H19 defective cells was partly rescued by miR-138 knockdown. Taken together, this study indicated that H19 is a positive regulator in tension-induced osteogenesis of hBMMSCs through acting as a ceRNA for miR-138 and then up-regulating downstream FAK.

Journal

BoneElsevier

Published: Mar 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off