Load-dependent bend-twist coupling effects on the steady-state hydroelastic response of composite hydrofoils

Load-dependent bend-twist coupling effects on the steady-state hydroelastic response of composite... The objective of this work is to present combined experimental and numerical studies of load-dependent bend-twist coupling effects on the steady-state hydroelastic response of composite hydrofoils. Experimental studies are presented for three composite and one stainless steel hydrofoils, all with the same unloaded geometry and mounted in the same cantilevered configuration. The stainless steel hydrofoil serves as the rigid baseline. The three composite hydrofoils are all made of epoxy resin reinforced with the same nominal layup of carbon fiber reinforced polymers and glass fiber reinforced polymers, with the primary difference being the orientation of the structural carbon layers relative to the spanwise axis of the hydrofoils. To compliment the experimental studies, a simple two-degrees of freedom fluid-structure interaction model is presented. The results show that material bend-twist coupling that leads to nose-up twist will experience higher hydrodynamic load coefficients, accelerated stall and static divergence, while the opposite is true for material bend-twist coupling that leads to nose-down twist. The non-dimensional hydrodynamic load coefficients for all four hydrofoils can be collapsed into the same trend line using the effective incidence, which is the geometric incidence plus the generalized tip twist angle. The results show good agreement between the experimental measurements and numerical predictions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Composite Structures Elsevier

Load-dependent bend-twist coupling effects on the steady-state hydroelastic response of composite hydrofoils

Loading next page...
 
/lp/elsevier/load-dependent-bend-twist-coupling-effects-on-the-steady-state-K6lWomJv6T
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0263-8223
eISSN
1879-1085
D.O.I.
10.1016/j.compstruct.2017.09.112
Publisher site
See Article on Publisher Site

Abstract

The objective of this work is to present combined experimental and numerical studies of load-dependent bend-twist coupling effects on the steady-state hydroelastic response of composite hydrofoils. Experimental studies are presented for three composite and one stainless steel hydrofoils, all with the same unloaded geometry and mounted in the same cantilevered configuration. The stainless steel hydrofoil serves as the rigid baseline. The three composite hydrofoils are all made of epoxy resin reinforced with the same nominal layup of carbon fiber reinforced polymers and glass fiber reinforced polymers, with the primary difference being the orientation of the structural carbon layers relative to the spanwise axis of the hydrofoils. To compliment the experimental studies, a simple two-degrees of freedom fluid-structure interaction model is presented. The results show that material bend-twist coupling that leads to nose-up twist will experience higher hydrodynamic load coefficients, accelerated stall and static divergence, while the opposite is true for material bend-twist coupling that leads to nose-down twist. The non-dimensional hydrodynamic load coefficients for all four hydrofoils can be collapsed into the same trend line using the effective incidence, which is the geometric incidence plus the generalized tip twist angle. The results show good agreement between the experimental measurements and numerical predictions.

Journal

Composite StructuresElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off