Linking data and process perspectives for conformance analysis

Linking data and process perspectives for conformance analysis The detection of data breaches has become a major challenge for most organizations. The problem lies in the fact that organizations often lack proper mechanisms to control and monitor users' activities and their data usage. Although several auditing approaches have been proposed to assess the compliance of actual executed behavior, existing approaches focus on either checking data accesses against security policies (data perspective) or checking user activities against the activities needed to conduct business processes (process perspective). Analyzing user behavior from these perspectives independently may not be sufficient to expose security incidents. In particular, security incidents may remain undetected or diagnosed incorrectly. This paper proposes a novel auditing approach that reconciles the data and process perspectives, thus enabling the identification of a large range of deviations. In particular, we analyze and classify deviations with respect to the intended purpose of data and the context in which data are used, and provide a novel algorithm to identify non-conforming user behavior. The approach has been implemented in the open source framework ProM and was evaluated through both controlled experiments and a case study using real-life event data. The results show that the approach is able to accurately identify deviations in both data usage and control-flow, while providing the purpose and context of the identified deviations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Computers & Security Elsevier

Linking data and process perspectives for conformance analysis

Loading next page...
 
/lp/elsevier/linking-data-and-process-perspectives-for-conformance-analysis-yC5Cpmp0z4
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0167-4048
D.O.I.
10.1016/j.cose.2017.10.010
Publisher site
See Article on Publisher Site

Abstract

The detection of data breaches has become a major challenge for most organizations. The problem lies in the fact that organizations often lack proper mechanisms to control and monitor users' activities and their data usage. Although several auditing approaches have been proposed to assess the compliance of actual executed behavior, existing approaches focus on either checking data accesses against security policies (data perspective) or checking user activities against the activities needed to conduct business processes (process perspective). Analyzing user behavior from these perspectives independently may not be sufficient to expose security incidents. In particular, security incidents may remain undetected or diagnosed incorrectly. This paper proposes a novel auditing approach that reconciles the data and process perspectives, thus enabling the identification of a large range of deviations. In particular, we analyze and classify deviations with respect to the intended purpose of data and the context in which data are used, and provide a novel algorithm to identify non-conforming user behavior. The approach has been implemented in the open source framework ProM and was evaluated through both controlled experiments and a case study using real-life event data. The results show that the approach is able to accurately identify deviations in both data usage and control-flow, while providing the purpose and context of the identified deviations.

Journal

Computers & SecurityElsevier

Published: Mar 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off