Lighted-weighted model predictive control for hybrid ventilation operation based on clusters of neural network models

Lighted-weighted model predictive control for hybrid ventilation operation based on clusters of... As one of the most significant factors to determine the success of a hybrid ventilation building, the control strategy for the hybrid ventilation operation attracts increasing attentions from both building designers and researchers these years. Recent advancements of the building control strategy have shown the potential to improve the hybrid ventilation operation. In this paper, we demonstrate the development of an advanced data-driven model predictive control (MPC) algorithm, i.e. a light-weighted three phase NN (neural network) model, for controlling the operation of hybrid ventilation buildings. To develop a robust model predictive control algorithm, firstly, different levels of uncertainties that commonly exist in the real world and building simulation are quantified to efficiently train the central model of the MPC and thoroughly test it in the future. In addition, in the model predictive control establishment process, four candidate mathematical models and ten prediction variables were analyzed during the MPC development to investigate its performance on the prediction as well. The results show that the neural network (NN) achieves the best performance considering both prediction performance and computation time. Six variables including the indoor and outdoor air temperature, relative humidity, office and season index and wind speed were finally chosen. At last, we conduct the validation of the algorithm for hybrid ventilation across four cities in different US climates under uncertainties presented in real practice. The comparison between the MPC and the rule-based control clearly presents that the developed MPC could be better at maintaining the thermal comfort of hybrid ventilation buildings while achieving a comparable amount of energy savings. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Automation in Construction Elsevier

Lighted-weighted model predictive control for hybrid ventilation operation based on clusters of neural network models

Loading next page...
 
/lp/elsevier/lighted-weighted-model-predictive-control-for-hybrid-ventilation-EOUdjpIZVi
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0926-5805
D.O.I.
10.1016/j.autcon.2018.02.014
Publisher site
See Article on Publisher Site

Abstract

As one of the most significant factors to determine the success of a hybrid ventilation building, the control strategy for the hybrid ventilation operation attracts increasing attentions from both building designers and researchers these years. Recent advancements of the building control strategy have shown the potential to improve the hybrid ventilation operation. In this paper, we demonstrate the development of an advanced data-driven model predictive control (MPC) algorithm, i.e. a light-weighted three phase NN (neural network) model, for controlling the operation of hybrid ventilation buildings. To develop a robust model predictive control algorithm, firstly, different levels of uncertainties that commonly exist in the real world and building simulation are quantified to efficiently train the central model of the MPC and thoroughly test it in the future. In addition, in the model predictive control establishment process, four candidate mathematical models and ten prediction variables were analyzed during the MPC development to investigate its performance on the prediction as well. The results show that the neural network (NN) achieves the best performance considering both prediction performance and computation time. Six variables including the indoor and outdoor air temperature, relative humidity, office and season index and wind speed were finally chosen. At last, we conduct the validation of the algorithm for hybrid ventilation across four cities in different US climates under uncertainties presented in real practice. The comparison between the MPC and the rule-based control clearly presents that the developed MPC could be better at maintaining the thermal comfort of hybrid ventilation buildings while achieving a comparable amount of energy savings.

Journal

Automation in ConstructionElsevier

Published: May 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off