Lighted-weighted model predictive control for hybrid ventilation operation based on clusters of neural network models

Lighted-weighted model predictive control for hybrid ventilation operation based on clusters of... As one of the most significant factors to determine the success of a hybrid ventilation building, the control strategy for the hybrid ventilation operation attracts increasing attentions from both building designers and researchers these years. Recent advancements of the building control strategy have shown the potential to improve the hybrid ventilation operation. In this paper, we demonstrate the development of an advanced data-driven model predictive control (MPC) algorithm, i.e. a light-weighted three phase NN (neural network) model, for controlling the operation of hybrid ventilation buildings. To develop a robust model predictive control algorithm, firstly, different levels of uncertainties that commonly exist in the real world and building simulation are quantified to efficiently train the central model of the MPC and thoroughly test it in the future. In addition, in the model predictive control establishment process, four candidate mathematical models and ten prediction variables were analyzed during the MPC development to investigate its performance on the prediction as well. The results show that the neural network (NN) achieves the best performance considering both prediction performance and computation time. Six variables including the indoor and outdoor air temperature, relative humidity, office and season index and wind speed were finally chosen. At last, we conduct the validation of the algorithm for hybrid ventilation across four cities in different US climates under uncertainties presented in real practice. The comparison between the MPC and the rule-based control clearly presents that the developed MPC could be better at maintaining the thermal comfort of hybrid ventilation buildings while achieving a comparable amount of energy savings. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Automation in Construction Elsevier

Lighted-weighted model predictive control for hybrid ventilation operation based on clusters of neural network models

Loading next page...
 
/lp/elsevier/lighted-weighted-model-predictive-control-for-hybrid-ventilation-EOUdjpIZVi
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0926-5805
D.O.I.
10.1016/j.autcon.2018.02.014
Publisher site
See Article on Publisher Site

Abstract

As one of the most significant factors to determine the success of a hybrid ventilation building, the control strategy for the hybrid ventilation operation attracts increasing attentions from both building designers and researchers these years. Recent advancements of the building control strategy have shown the potential to improve the hybrid ventilation operation. In this paper, we demonstrate the development of an advanced data-driven model predictive control (MPC) algorithm, i.e. a light-weighted three phase NN (neural network) model, for controlling the operation of hybrid ventilation buildings. To develop a robust model predictive control algorithm, firstly, different levels of uncertainties that commonly exist in the real world and building simulation are quantified to efficiently train the central model of the MPC and thoroughly test it in the future. In addition, in the model predictive control establishment process, four candidate mathematical models and ten prediction variables were analyzed during the MPC development to investigate its performance on the prediction as well. The results show that the neural network (NN) achieves the best performance considering both prediction performance and computation time. Six variables including the indoor and outdoor air temperature, relative humidity, office and season index and wind speed were finally chosen. At last, we conduct the validation of the algorithm for hybrid ventilation across four cities in different US climates under uncertainties presented in real practice. The comparison between the MPC and the rule-based control clearly presents that the developed MPC could be better at maintaining the thermal comfort of hybrid ventilation buildings while achieving a comparable amount of energy savings.

Journal

Automation in ConstructionElsevier

Published: May 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial