Light-stress-induced pigment changes and evidence for anthocyanin photoprotection in apples

Light-stress-induced pigment changes and evidence for anthocyanin photoprotection in apples Fruit of two apple ( Malus domestica Borkh.) cultivars, differing in their ability to produce anthocyanin pigments when exposed to sunlight, have been studied using reflectance spectroscopy. Comparison of the spectra shows that apple anthocyanins in vivo possess a symmetric absorption band at 500–600 nm with a maximum near 550 nm. Anthocyanins considerably increase light absorption by apples. In on-tree-ripening Zhigulevskoe apples, accumulating high amounts of anthocyanin pigments, chlorophyll contents in sunlit and shaded sides of the fruits are found to be similar. In contrast, frequently considerably lower chlorophyll content is estimated in sunlit compared with shaded sides of Antonovka apples exhibiting low potential for anthocyanin formation. Sunlight also brings about an increase of carotenoid content over that of chlorophylls and accumulation of substances responsible for light absorption in the range 350–400 nm. The rates of high-light-induced chlorophyll bleaching in red zones of fruit containing anthocyanins are considerably lower than those in green zones and decrease with an increase in the pigment content. Anthocyanins show more stability to irradiation than chlorophylls. A protective function of anthocyanins against both light-induced stress in, and damage to, apples is suggested. It is proposed that anthocyanins function as an effective internal light trap filling the chlorophyll absorption gap in the green–orange part of the visible spectrum. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Photochemistry and Photobiology B: Biology Elsevier

Light-stress-induced pigment changes and evidence for anthocyanin photoprotection in apples

Loading next page...
 
/lp/elsevier/light-stress-induced-pigment-changes-and-evidence-for-anthocyanin-w47NBtFtr3
Publisher
Elsevier
Copyright
Copyright © 2000 Elsevier Science S.A.
ISSN
1011-1344
eISSN
1873-2682
DOI
10.1016/S1011-1344(00)00042-7
Publisher site
See Article on Publisher Site

Abstract

Fruit of two apple ( Malus domestica Borkh.) cultivars, differing in their ability to produce anthocyanin pigments when exposed to sunlight, have been studied using reflectance spectroscopy. Comparison of the spectra shows that apple anthocyanins in vivo possess a symmetric absorption band at 500–600 nm with a maximum near 550 nm. Anthocyanins considerably increase light absorption by apples. In on-tree-ripening Zhigulevskoe apples, accumulating high amounts of anthocyanin pigments, chlorophyll contents in sunlit and shaded sides of the fruits are found to be similar. In contrast, frequently considerably lower chlorophyll content is estimated in sunlit compared with shaded sides of Antonovka apples exhibiting low potential for anthocyanin formation. Sunlight also brings about an increase of carotenoid content over that of chlorophylls and accumulation of substances responsible for light absorption in the range 350–400 nm. The rates of high-light-induced chlorophyll bleaching in red zones of fruit containing anthocyanins are considerably lower than those in green zones and decrease with an increase in the pigment content. Anthocyanins show more stability to irradiation than chlorophylls. A protective function of anthocyanins against both light-induced stress in, and damage to, apples is suggested. It is proposed that anthocyanins function as an effective internal light trap filling the chlorophyll absorption gap in the green–orange part of the visible spectrum.

Journal

Journal of Photochemistry and Photobiology B: BiologyElsevier

Published: May 30, 2000

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off