LiFe1-XMgXPO4/C as cathode materials for lithium-ion batteries

LiFe1-XMgXPO4/C as cathode materials for lithium-ion batteries A cathode nanomaterial LiFe0.8Mg0.2PO4 with olivine structure was synthesized by the sol-gel method and studied using X-ray diffraction analysis, scanning electron microscopy, Mössbauer spectroscopy and electrochemical testing under the operating conditions of a lithium-ion battery. It is demonstrated that the iron substitution with magnesium occurs in the studied material. Discharge capacity of LiFe0.8Mg0.2PO4/С is 127 mAh g−1 at a current of 20 mA g−1 and is close to the theoretical value for the considered composition. It is determined utilizing Mössbauer spectroscopy that at the early stage of the LiFe0.8Mg0.2PO4 charging process nanoscale regions are formed, having a FePO4 structure and an enhanced solubility of divalent iron ions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Solid State Ionics Elsevier

Loading next page...
 
/lp/elsevier/life1-xmgxpo4-c-as-cathode-materials-for-lithium-ion-batteries-jAhSoe89cv
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0167-2738
eISSN
1872-7689
D.O.I.
10.1016/j.ssi.2018.01.011
Publisher site
See Article on Publisher Site

Abstract

A cathode nanomaterial LiFe0.8Mg0.2PO4 with olivine structure was synthesized by the sol-gel method and studied using X-ray diffraction analysis, scanning electron microscopy, Mössbauer spectroscopy and electrochemical testing under the operating conditions of a lithium-ion battery. It is demonstrated that the iron substitution with magnesium occurs in the studied material. Discharge capacity of LiFe0.8Mg0.2PO4/С is 127 mAh g−1 at a current of 20 mA g−1 and is close to the theoretical value for the considered composition. It is determined utilizing Mössbauer spectroscopy that at the early stage of the LiFe0.8Mg0.2PO4 charging process nanoscale regions are formed, having a FePO4 structure and an enhanced solubility of divalent iron ions.

Journal

Solid State IonicsElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off