Life cycle assessment of wheat straw lignocellulosic bio-ethanol fuel in a local biorefinery prospective

Life cycle assessment of wheat straw lignocellulosic bio-ethanol fuel in a local biorefinery... A ″cradle-to-wheel" life cycle analysis was carried out to investigate the environmental profile of bioethanol (EtOH) production from lignocellulosic wheat straw (WS) and its use as transport fuel in E10 (10% of EtOH and 90% of gasoline) and E85 (85% of EtOH and 15% of gasoline) vehicles. The aims of this study were: (i) to evaluate the environmental performance of the whole WS-EtOH supply chain and (ii) to identify the best performing feedstock for a prospective bio-refinery network in Campania Region (Southern Italy). A comparison of WS-EtOH system against the fossil counterpart (gasoline passenger car) and similar bio-based production-use chains was conducted to fulfil one of the main goals of EnerBiochem and BioPoliS projects: investigating the environmental profitability of a bio-refinery system in Campania Region. Starting from the use of residual feedstock (wheat straw) or the revaluation of marginal lands (cultivation of dedicated perennial giant reed or annul fiber sorghum), through the investigation of an advanced lignocellulosic conversion processes, this work assesses the environmental feasibility of bio-energy production in Campania Region.The WS-E10 environmental profile was driven by the gasoline input in the blend, whilst the WS-E85 results showed the relevance of the crop phase. The comparison of the different blends and the gasoline-fuelled car highlighted for E10-blends similar profiles for almost all the impact categories, nearly overlapping with the conventional vehicle. Differently, for E85 vehicles, the differences between the bio-based systems appeared amplified according to the specific impacts of the feedstock supply and the conversion steps. On the whole, Fiber Sorghum-E85 system showed the worst environmental profile whilst WS-E85 entailed the best performance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Cleaner Production Elsevier

Life cycle assessment of wheat straw lignocellulosic bio-ethanol fuel in a local biorefinery prospective

Loading next page...
 
/lp/elsevier/life-cycle-assessment-of-wheat-straw-lignocellulosic-bio-ethanol-fuel-kZiURXgiqr
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0959-6526
D.O.I.
10.1016/j.jclepro.2018.05.130
Publisher site
See Article on Publisher Site

Abstract

A ″cradle-to-wheel" life cycle analysis was carried out to investigate the environmental profile of bioethanol (EtOH) production from lignocellulosic wheat straw (WS) and its use as transport fuel in E10 (10% of EtOH and 90% of gasoline) and E85 (85% of EtOH and 15% of gasoline) vehicles. The aims of this study were: (i) to evaluate the environmental performance of the whole WS-EtOH supply chain and (ii) to identify the best performing feedstock for a prospective bio-refinery network in Campania Region (Southern Italy). A comparison of WS-EtOH system against the fossil counterpart (gasoline passenger car) and similar bio-based production-use chains was conducted to fulfil one of the main goals of EnerBiochem and BioPoliS projects: investigating the environmental profitability of a bio-refinery system in Campania Region. Starting from the use of residual feedstock (wheat straw) or the revaluation of marginal lands (cultivation of dedicated perennial giant reed or annul fiber sorghum), through the investigation of an advanced lignocellulosic conversion processes, this work assesses the environmental feasibility of bio-energy production in Campania Region.The WS-E10 environmental profile was driven by the gasoline input in the blend, whilst the WS-E85 results showed the relevance of the crop phase. The comparison of the different blends and the gasoline-fuelled car highlighted for E10-blends similar profiles for almost all the impact categories, nearly overlapping with the conventional vehicle. Differently, for E85 vehicles, the differences between the bio-based systems appeared amplified according to the specific impacts of the feedstock supply and the conversion steps. On the whole, Fiber Sorghum-E85 system showed the worst environmental profile whilst WS-E85 entailed the best performance.

Journal

Journal of Cleaner ProductionElsevier

Published: Sep 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off