Life Cycle Assessment of activated carbon production from coconut shells

Life Cycle Assessment of activated carbon production from coconut shells Activated carbons have excellent performance in a number of process applications. In particular, they appear to have the most favourable characteristics for adsorption processes, thanks to their high porosity and large surface area. However, a comprehensive assessment of the environmental impacts of their manufacturing chain is still lacking. This study evaluates these impacts taking the specific case of activated carbon produced from coconut shells in Indonesia, which is the major coconut producer county. Coconut shells as raw materials are utilized for activated carbon production due to their abundant supply, high density and purity, and because they seem to have a clear environmental advantage over coal-based carbons, particularly in terms of acidification potential, non-renewable energy demand and carbon footprint. Life Cycle Assessment and process analysis are used to quantify all the environmental interactions over the stages of the life cycle of an activated carbon manufacturing chain, in terms of inputs of energy and natural resources and of outputs of emissions to the different environmental compartments. Estimates for the environmental burdens over the life cycle have been obtained by developing mass and energy balances for each of the process units in the production chain. The results indicate the operations with the greatest effects on the environmental performance of activated carbon production and hence where improvements are necessary. In particular, using electrical energy produced from renewable sources, such as biomass, would reduce the contributions to human toxicity (by up to 60%) and global warming (by up to 80%). Moreover, when the material is transported for processing in a country with a low-carbon electricity system, the potential human toxicity and global warming impacts can be reduced by as much as 90% and 60% respectively. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Cleaner Production Elsevier

Life Cycle Assessment of activated carbon production from coconut shells

Loading next page...
 
/lp/elsevier/life-cycle-assessment-of-activated-carbon-production-from-coconut-bJURhQdLnG
Publisher
Elsevier
Copyright
Copyright © 2016 The Authors
ISSN
0959-6526
D.O.I.
10.1016/j.jclepro.2016.03.073
Publisher site
See Article on Publisher Site

Abstract

Activated carbons have excellent performance in a number of process applications. In particular, they appear to have the most favourable characteristics for adsorption processes, thanks to their high porosity and large surface area. However, a comprehensive assessment of the environmental impacts of their manufacturing chain is still lacking. This study evaluates these impacts taking the specific case of activated carbon produced from coconut shells in Indonesia, which is the major coconut producer county. Coconut shells as raw materials are utilized for activated carbon production due to their abundant supply, high density and purity, and because they seem to have a clear environmental advantage over coal-based carbons, particularly in terms of acidification potential, non-renewable energy demand and carbon footprint. Life Cycle Assessment and process analysis are used to quantify all the environmental interactions over the stages of the life cycle of an activated carbon manufacturing chain, in terms of inputs of energy and natural resources and of outputs of emissions to the different environmental compartments. Estimates for the environmental burdens over the life cycle have been obtained by developing mass and energy balances for each of the process units in the production chain. The results indicate the operations with the greatest effects on the environmental performance of activated carbon production and hence where improvements are necessary. In particular, using electrical energy produced from renewable sources, such as biomass, would reduce the contributions to human toxicity (by up to 60%) and global warming (by up to 80%). Moreover, when the material is transported for processing in a country with a low-carbon electricity system, the potential human toxicity and global warming impacts can be reduced by as much as 90% and 60% respectively.

Journal

Journal of Cleaner ProductionElsevier

Published: Jul 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off