LiDAR, UAV or compass-clinometer? Accuracy, coverage and the effects on structural models

LiDAR, UAV or compass-clinometer? Accuracy, coverage and the effects on structural models Light Detection and Ranging (LiDAR) and Structure from Motion (SfM) provide large amounts of digital data from which virtual outcrops can be created. The accuracy of these surface reconstructions is critical for quantitative structural analysis. Assessment of LiDAR and SfM methodologies suggest that SfM results are comparable to high data-density LiDAR on individual surfaces. The effect of chosen acquisition technique on the full outcrop and the efficacy on its virtual form for quantitative structural analysis and prediction beyond single bedding surfaces, however, is less certain. Here, we compare the accuracy of digital virtual outcrop analysis with traditional field data, for structural measurements and along-strike prediction of fold geometry from Stackpole syncline. In this case, the SfM virtual outcrop, derived from UAV imagery, yields better along-strike predictions and a more reliable geological model, in spite of lower accuracy surface reconstructions than LiDAR. This outcome is attributed to greater coverage by UAV and reliable reconstruction of a greater number of bedding planes than terrestrial LiDAR, which suffers from the effects of occlusion. Irrespective of the chosen acquisition technique, we find that workflows must incorporate careful survey planning, data processing and quality checking of derived data if virtual outcrops are to be used for robust structural analysis and along-strike prediction. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Structural Geology Elsevier

LiDAR, UAV or compass-clinometer? Accuracy, coverage and the effects on structural models

Loading next page...
 
/lp/elsevier/lidar-uav-or-compass-clinometer-accuracy-coverage-and-the-effects-on-we4ZmLzuOe
Publisher
Elsevier
Copyright
Copyright © 2017 The Authors
ISSN
0191-8141
eISSN
1873-1201
D.O.I.
10.1016/j.jsg.2017.04.004
Publisher site
See Article on Publisher Site

Abstract

Light Detection and Ranging (LiDAR) and Structure from Motion (SfM) provide large amounts of digital data from which virtual outcrops can be created. The accuracy of these surface reconstructions is critical for quantitative structural analysis. Assessment of LiDAR and SfM methodologies suggest that SfM results are comparable to high data-density LiDAR on individual surfaces. The effect of chosen acquisition technique on the full outcrop and the efficacy on its virtual form for quantitative structural analysis and prediction beyond single bedding surfaces, however, is less certain. Here, we compare the accuracy of digital virtual outcrop analysis with traditional field data, for structural measurements and along-strike prediction of fold geometry from Stackpole syncline. In this case, the SfM virtual outcrop, derived from UAV imagery, yields better along-strike predictions and a more reliable geological model, in spite of lower accuracy surface reconstructions than LiDAR. This outcome is attributed to greater coverage by UAV and reliable reconstruction of a greater number of bedding planes than terrestrial LiDAR, which suffers from the effects of occlusion. Irrespective of the chosen acquisition technique, we find that workflows must incorporate careful survey planning, data processing and quality checking of derived data if virtual outcrops are to be used for robust structural analysis and along-strike prediction.

Journal

Journal of Structural GeologyElsevier

Published: May 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off