Landscape variability and surface flux parameterization in climate models

Landscape variability and surface flux parameterization in climate models The Earth's surface shows variability at the landscape scale (1–10 km); the influence of surface variability at this scale has been analysed to provide a parameterization for use in large-scale atmospheric models with a grid size unable to solve the landscape scale explicitly. Landscape variations are found to add drag to the atmosphere, owing to sudden changes in vegetation height. The drag increases momentum flux and indirectly influences the transfer of heat and gases between the landscape and the atmosphere. Consequently, the exchange between a variable landscape and the atmosphere deviates from a simple sum of the exchanges between landscape elements and the contiguous air layer. Strong influences are found for tree lines and forest edges. Most of the existing aggregation schemes for grid-averaged fluxes in large-scale models strongly underestimate the consequences of landscape variability owing to the neglect of drag at surface transitions. The supplementary drag can easily be incorporated in an aggregation scheme of surface fluxes in a large-scale model. New experiments on the landscape scale are recommended to improve the accuracy of the method. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Agricultural and Forest Meteorology Elsevier

Landscape variability and surface flux parameterization in climate models

Loading next page...
 
/lp/elsevier/landscape-variability-and-surface-flux-parameterization-in-climate-Z9lswqlXFD
Publisher
Elsevier
Copyright
Copyright © 1995 Elsevier Ltd
ISSN
0168-1923
D.O.I.
10.1016/0168-1923(94)05073-F
Publisher site
See Article on Publisher Site

Abstract

The Earth's surface shows variability at the landscape scale (1–10 km); the influence of surface variability at this scale has been analysed to provide a parameterization for use in large-scale atmospheric models with a grid size unable to solve the landscape scale explicitly. Landscape variations are found to add drag to the atmosphere, owing to sudden changes in vegetation height. The drag increases momentum flux and indirectly influences the transfer of heat and gases between the landscape and the atmosphere. Consequently, the exchange between a variable landscape and the atmosphere deviates from a simple sum of the exchanges between landscape elements and the contiguous air layer. Strong influences are found for tree lines and forest edges. Most of the existing aggregation schemes for grid-averaged fluxes in large-scale models strongly underestimate the consequences of landscape variability owing to the neglect of drag at surface transitions. The supplementary drag can easily be incorporated in an aggregation scheme of surface fluxes in a large-scale model. New experiments on the landscape scale are recommended to improve the accuracy of the method.

Journal

Agricultural and Forest MeteorologyElsevier

Published: Mar 1, 1995

References

  • The surface layer above a landscape with a rectangular windbreak pattern
    Wang, H.; Klaassen, W.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off