Lahar inundated, modified, and preserved 1.88 Ma early hominin (OH24 and OH56) Olduvai DK site

Lahar inundated, modified, and preserved 1.88 Ma early hominin (OH24 and OH56) Olduvai DK site Archaeological excavations at the DK site in the eastern Olduvai Basin, Tanzania, age-bracketed between ∼1.88 Ma (Bed I Basalt) and ∼1.85 Ma (Tuff IB), record the oldest lahar inundation, modification, and preservation of a hominin “occupation” site yet identified. Our landscape approach reconstructs environments and processes at high resolution to explain the distribution and final preservation of archaeological materials at the DK site, where an early hominin (likely Homo habilis) assemblage of stone tools and bones, found close to hominin specimens OH24 and OH56, developed on an uneven heterogeneous surface that was rapidly inundated by a lahar and buried to a depth of 0.4–1.2 m (originally ∼1.0–2.4 m pre-compaction). The incoming intermediate to high viscosity mudflow selectively modified the original accumulation of “occupation debris,” so that it is no longer confined to the original surface. A dispersive debris “halo” was identified within the lahar deposit: debris is densest immediately above the site, but tails off until not present >150 m laterally. Voorhies indices and metrics derived from limb bones are used to define this dispersive halo spatially and might indicate a possible second assemblage to the east that is now eroded away. Based upon our new data and prior descriptions, two possibilities for the OH24 skull are suggested: it was either entrained by the mudflow from the DK surface and floated due to lower density toward its top, or it was deposited upon the solid top surface after its consolidation. Matrix adhering to material found in association with the parietals indicates that OH56 at least was relocated by the mudflow. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Human Evolution Elsevier

Lahar inundated, modified, and preserved 1.88 Ma early hominin (OH24 and OH56) Olduvai DK site

Loading next page...
 
/lp/elsevier/lahar-inundated-modified-and-preserved-1-88-ma-early-hominin-oh24-and-zvftsheBZD
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0047-2484
eISSN
1095-8606
D.O.I.
10.1016/j.jhevol.2017.11.011
Publisher site
See Article on Publisher Site

Abstract

Archaeological excavations at the DK site in the eastern Olduvai Basin, Tanzania, age-bracketed between ∼1.88 Ma (Bed I Basalt) and ∼1.85 Ma (Tuff IB), record the oldest lahar inundation, modification, and preservation of a hominin “occupation” site yet identified. Our landscape approach reconstructs environments and processes at high resolution to explain the distribution and final preservation of archaeological materials at the DK site, where an early hominin (likely Homo habilis) assemblage of stone tools and bones, found close to hominin specimens OH24 and OH56, developed on an uneven heterogeneous surface that was rapidly inundated by a lahar and buried to a depth of 0.4–1.2 m (originally ∼1.0–2.4 m pre-compaction). The incoming intermediate to high viscosity mudflow selectively modified the original accumulation of “occupation debris,” so that it is no longer confined to the original surface. A dispersive debris “halo” was identified within the lahar deposit: debris is densest immediately above the site, but tails off until not present >150 m laterally. Voorhies indices and metrics derived from limb bones are used to define this dispersive halo spatially and might indicate a possible second assemblage to the east that is now eroded away. Based upon our new data and prior descriptions, two possibilities for the OH24 skull are suggested: it was either entrained by the mudflow from the DK surface and floated due to lower density toward its top, or it was deposited upon the solid top surface after its consolidation. Matrix adhering to material found in association with the parietals indicates that OH56 at least was relocated by the mudflow.

Journal

Journal of Human EvolutionElsevier

Published: Mar 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off