Lagrangian statistics in turbulent channel flow

Lagrangian statistics in turbulent channel flow Lagrangian statistics have been obtained from large eddy simulations of fully developed turbulent channel flow. Calculations were performed at Reynolds numbers of 3200 and 21,900 (based on centerline velocity and channel half-width); statistics of the Eulerian velocity field are in good agreement with both direct numerical simulation data and experimental measurements. Single-particle Lagrangian velocity autocorrelations and particle mean-square dispersion were obtained from trajectories measured for 5000 fluid elements initially in either the viscous sublayer, buffer layer, or logarithmic region. The Lagrangian velocity autocorrelation of particles initially located in the log region decreases less rapidly than for particles initially in the buffer layer, which in turn decreases more slowly than for particles initially in the viscous sublayer. The ratio of the Lagrangian to Eulerian integral timescales were found to be proportional to the inverse of the turbulence intensity, in agreement with theoretical predictions and atmospheric measurements. Growth of particle mean-square dispersion at long diffusion times is proportional to time and in agreement with theory (with the exception of the surface-normal coordinate in which the presence of the channel wall limits dispersion). However, extremely long transport times are required to achieve the asymptotic state for the dispersion. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Atmospheric Environment Elsevier

Lagrangian statistics in turbulent channel flow

Loading next page...
 
/lp/elsevier/lagrangian-statistics-in-turbulent-channel-flow-Q2ScLV8Tgb
Publisher
Elsevier
Copyright
Copyright © 1995 Elsevier Ltd
ISSN
1352-2310
eISSN
1873-2844
D.O.I.
10.1016/1352-2310(95)00190-A
Publisher site
See Article on Publisher Site

Abstract

Lagrangian statistics have been obtained from large eddy simulations of fully developed turbulent channel flow. Calculations were performed at Reynolds numbers of 3200 and 21,900 (based on centerline velocity and channel half-width); statistics of the Eulerian velocity field are in good agreement with both direct numerical simulation data and experimental measurements. Single-particle Lagrangian velocity autocorrelations and particle mean-square dispersion were obtained from trajectories measured for 5000 fluid elements initially in either the viscous sublayer, buffer layer, or logarithmic region. The Lagrangian velocity autocorrelation of particles initially located in the log region decreases less rapidly than for particles initially in the buffer layer, which in turn decreases more slowly than for particles initially in the viscous sublayer. The ratio of the Lagrangian to Eulerian integral timescales were found to be proportional to the inverse of the turbulence intensity, in agreement with theoretical predictions and atmospheric measurements. Growth of particle mean-square dispersion at long diffusion times is proportional to time and in agreement with theory (with the exception of the surface-normal coordinate in which the presence of the channel wall limits dispersion). However, extremely long transport times are required to achieve the asymptotic state for the dispersion.

Journal

Atmospheric EnvironmentElsevier

Published: Sep 1, 1995

References

  • A dynamic subgrid scale eddy viscosity model
    Germano, M.; Piomelli, U.; Moin, P.; Cabot, W.H.
  • Statistical Fluid Mechanics
    Monin, A.S.; Yaglom, A.M.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off