Label-free photoelectrochemical immunosensing platform for detection of carcinoembryonic antigen through photoactive conducting poly(5-formylindole) nanocomposite

Label-free photoelectrochemical immunosensing platform for detection of carcinoembryonic antigen... Poly(5-formylindole)/electrochemically reduced graphene oxide (P5FIn/erGO) nanocomposite is firstly used to construct a label-free photoelectrochemical (PEC) immunosensor to detect carcinoembryonic antigen (CEA). As photoactive material and electroactive mediator, the prepared P5FIn/erGO nanocomposite exhibits high photocurrent intensity under visible-light irradiation due to the synergistic effect of P5FIn and erGO. The anti-CEA is connected to the P5FIn/erGO modified electrode surface, and gold nanoparticles (AuNP) is used as cross-linking in the process. The linear decrease of photocurrent is caused by the specific recognition of anti-CEA and CEA. This PEC immunosensor shows a wide linear response to CEA ranging from 0.0005 to 50 ng mL−1 with a low detection limit of 0.14 pg mL−1. The proposed immunosensor has good stability, reproducibility and high specificity. The satisfied results are also obtained when this immunosensor is used to detect CEA in actual human serum samples analysis, thus opening up a new promising PEC analysis platform based on conducting polymers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biosensors and Bioelectronics Elsevier

Label-free photoelectrochemical immunosensing platform for detection of carcinoembryonic antigen through photoactive conducting poly(5-formylindole) nanocomposite

Loading next page...
 
/lp/elsevier/label-free-photoelectrochemical-immunosensing-platform-for-detection-8ineWU58XA
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0956-5663
D.O.I.
10.1016/j.bios.2018.05.041
Publisher site
See Article on Publisher Site

Abstract

Poly(5-formylindole)/electrochemically reduced graphene oxide (P5FIn/erGO) nanocomposite is firstly used to construct a label-free photoelectrochemical (PEC) immunosensor to detect carcinoembryonic antigen (CEA). As photoactive material and electroactive mediator, the prepared P5FIn/erGO nanocomposite exhibits high photocurrent intensity under visible-light irradiation due to the synergistic effect of P5FIn and erGO. The anti-CEA is connected to the P5FIn/erGO modified electrode surface, and gold nanoparticles (AuNP) is used as cross-linking in the process. The linear decrease of photocurrent is caused by the specific recognition of anti-CEA and CEA. This PEC immunosensor shows a wide linear response to CEA ranging from 0.0005 to 50 ng mL−1 with a low detection limit of 0.14 pg mL−1. The proposed immunosensor has good stability, reproducibility and high specificity. The satisfied results are also obtained when this immunosensor is used to detect CEA in actual human serum samples analysis, thus opening up a new promising PEC analysis platform based on conducting polymers.

Journal

Biosensors and BioelectronicsElsevier

Published: Sep 30, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off