Kissing bond detection in structural adhesive joints using nonlinear dynamic characteristics

Kissing bond detection in structural adhesive joints using nonlinear dynamic characteristics In this paper, the effect of kissing bond on nonlinear dynamic behavior of structures with flexible adhesive joint is investigated. Bilinear characteristic due to opening and closing in kissing bond region results in nonlinear dynamic behavior of the structure such as harmonic distortion in response to harmonic excitation. So, the higher-order harmonics can be considered as Nonlinear Damage Indicator Functions (NDIF) for the purpose of damage identification. A two-dimensional (2D) finite element model of a beam connected to a rigid support via a flexible adhesive layer is used to investigate the efficiency of the proposed NDIFs in kissing bond detection. Kissing bond is introduced to the model via contact elements. NDIFs are extracted for the finite element model using single tone stepped-sine test simulation. Parameters such as amplitude of excitation, size and location of kissing bond region as well as friction between kissing surfaces, are studied. The results proved that the NDIFs are sensitive to the size and location of kissing bond. Consequently, in an experimental damage identification procedure, NDIFs can be used as an indicator of kissing bond type damages in adhesive joints. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Adhesion and Adhesives Elsevier

Kissing bond detection in structural adhesive joints using nonlinear dynamic characteristics

Loading next page...
 
/lp/elsevier/kissing-bond-detection-in-structural-adhesive-joints-using-nonlinear-BmIISr83x9
Publisher
Elsevier
Copyright
Copyright © 2015 Elsevier Ltd
ISSN
0143-7496
D.O.I.
10.1016/j.ijadhadh.2015.08.004
Publisher site
See Article on Publisher Site

Abstract

In this paper, the effect of kissing bond on nonlinear dynamic behavior of structures with flexible adhesive joint is investigated. Bilinear characteristic due to opening and closing in kissing bond region results in nonlinear dynamic behavior of the structure such as harmonic distortion in response to harmonic excitation. So, the higher-order harmonics can be considered as Nonlinear Damage Indicator Functions (NDIF) for the purpose of damage identification. A two-dimensional (2D) finite element model of a beam connected to a rigid support via a flexible adhesive layer is used to investigate the efficiency of the proposed NDIFs in kissing bond detection. Kissing bond is introduced to the model via contact elements. NDIFs are extracted for the finite element model using single tone stepped-sine test simulation. Parameters such as amplitude of excitation, size and location of kissing bond region as well as friction between kissing surfaces, are studied. The results proved that the NDIFs are sensitive to the size and location of kissing bond. Consequently, in an experimental damage identification procedure, NDIFs can be used as an indicator of kissing bond type damages in adhesive joints.

Journal

International Journal of Adhesion and AdhesivesElsevier

Published: Dec 1, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off