Jurassic–Cretaceous granitoids and related tectono-metallogenesis in the Zapug–Duobuza arc, western Tibet

Jurassic–Cretaceous granitoids and related tectono-metallogenesis in the Zapug–Duobuza arc,... The Zapug–Duobuza magmatic arc (ZDMA), located along the southern edge of the south Qiangtang terrane in western Tibet, extends east–west for ~400km. Small scattered granite and porphyry intrusions crop out in the ZDMA, but a large amount of granite may be buried by Late Cretaceous to Paleogene thrusting. Two stages of magmatism have been identified, at 170–150Ma and 130–110Ma. The widely distributed Middle–Late Jurassic granite intrusions in the ZDMA exhibit SrNd isotopic characteristics similar to those of ore-bearing porphyries in the Duolong giant CuAu deposit, and their εHf(t) values mostly overlap those of other porphyry CuMo deposits in the ZDMA and the Gangdese zone. The SrNdHf isotopic geochemistry suggests variable contributions of mantle and Qiangtang crustal sources, and indicates the presence of two new ore districts with potentials for CuAu, Fe, and PbZn ores, located in the Jiacuo–Liqunshan and Larelaxin–Caima areas. Except for the Duolong ore-forming porphyries, which show significant contributions of mantle components intruded into an accretionary mélange setting, the Early Cretaceous granites in other areas of the belt are of mostly crustal origin, from sources in Qiangtang felsic basement and Permo-Carboniferous strata, indicating the weak ore-forming potential of skarn-type Fe and PbZn deposits. The ephemeral but deep Bangong Co–Nujiang ocean in the Early Jurassic evolved into a shallow compressional marine basin in the Middle–Late Jurassic, possibly transitioning to northward flat subduction of oceanic crust at this time. The subducted slab broke off in the Early Cretaceous, initiating a peak in arc magmatism and metallogenesis at 125–110Ma. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ore Geology Reviews Elsevier

Jurassic–Cretaceous granitoids and related tectono-metallogenesis in the Zapug–Duobuza arc, western Tibet

Loading next page...
 
/lp/elsevier/jurassic-cretaceous-granitoids-and-related-tectono-metallogenesis-in-Po3aKXmPTL
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier B.V.
ISSN
0169-1368
eISSN
1872-7360
D.O.I.
10.1016/j.oregeorev.2016.02.018
Publisher site
See Article on Publisher Site

Abstract

The Zapug–Duobuza magmatic arc (ZDMA), located along the southern edge of the south Qiangtang terrane in western Tibet, extends east–west for ~400km. Small scattered granite and porphyry intrusions crop out in the ZDMA, but a large amount of granite may be buried by Late Cretaceous to Paleogene thrusting. Two stages of magmatism have been identified, at 170–150Ma and 130–110Ma. The widely distributed Middle–Late Jurassic granite intrusions in the ZDMA exhibit SrNd isotopic characteristics similar to those of ore-bearing porphyries in the Duolong giant CuAu deposit, and their εHf(t) values mostly overlap those of other porphyry CuMo deposits in the ZDMA and the Gangdese zone. The SrNdHf isotopic geochemistry suggests variable contributions of mantle and Qiangtang crustal sources, and indicates the presence of two new ore districts with potentials for CuAu, Fe, and PbZn ores, located in the Jiacuo–Liqunshan and Larelaxin–Caima areas. Except for the Duolong ore-forming porphyries, which show significant contributions of mantle components intruded into an accretionary mélange setting, the Early Cretaceous granites in other areas of the belt are of mostly crustal origin, from sources in Qiangtang felsic basement and Permo-Carboniferous strata, indicating the weak ore-forming potential of skarn-type Fe and PbZn deposits. The ephemeral but deep Bangong Co–Nujiang ocean in the Early Jurassic evolved into a shallow compressional marine basin in the Middle–Late Jurassic, possibly transitioning to northward flat subduction of oceanic crust at this time. The subducted slab broke off in the Early Cretaceous, initiating a peak in arc magmatism and metallogenesis at 125–110Ma.

Journal

Ore Geology ReviewsElsevier

Published: Sep 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off