Isotropic continuum damage mechanics for concrete under cyclic loading: Stiffness recovery, inelastic strains and frictional sliding

Isotropic continuum damage mechanics for concrete under cyclic loading: Stiffness recovery,... A three dimensional set of constitutive equations for modelling quasi-brittle materials such as concrete is presented. It is formulated within the framework of irreversible processes thermodynamics in order to fulfill physical consistency. A single scalar damage variable has been introduced in order to take into account nonlinearities due to micro-cracking. The sliding influence and the partial stiffness recovery have been considered for cyclic loadings. Related numerical aspects are presented. Both plain and reinforced concrete structures are computed up to failure in order to show the efficiency and the robustness of the proposed model. Numerical results are both quantitatively and qualitatively compared to experimental data and highlight good agreement. The proposed constitutive equations seem accurate and robust enough for computing large scale structure subject not only to monotonic loadings but also to cyclic ones. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Engineering Fracture Mechanics Elsevier

Isotropic continuum damage mechanics for concrete under cyclic loading: Stiffness recovery, inelastic strains and frictional sliding

Loading next page...
 
/lp/elsevier/isotropic-continuum-damage-mechanics-for-concrete-under-cyclic-loading-pFv8gE1b0w
Publisher
Elsevier
Copyright
Copyright © 2010 Elsevier Ltd
ISSN
0013-7944
eISSN
1873-7315
D.O.I.
10.1016/j.engfracmech.2010.02.010
Publisher site
See Article on Publisher Site

Abstract

A three dimensional set of constitutive equations for modelling quasi-brittle materials such as concrete is presented. It is formulated within the framework of irreversible processes thermodynamics in order to fulfill physical consistency. A single scalar damage variable has been introduced in order to take into account nonlinearities due to micro-cracking. The sliding influence and the partial stiffness recovery have been considered for cyclic loadings. Related numerical aspects are presented. Both plain and reinforced concrete structures are computed up to failure in order to show the efficiency and the robustness of the proposed model. Numerical results are both quantitatively and qualitatively compared to experimental data and highlight good agreement. The proposed constitutive equations seem accurate and robust enough for computing large scale structure subject not only to monotonic loadings but also to cyclic ones.

Journal

Engineering Fracture MechanicsElsevier

Published: May 1, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off