Is bigger better? Driving factors of POTW performance in New York

Is bigger better? Driving factors of POTW performance in New York Like many regions around the world, New York State, USA, faces challenges in meeting wastewater treatment quality standards because of aging infrastructure, limited funding, shifting demographics and increasingly stringent environmental regulations. In recent decades construction of new wastewater treatment and distribution infrastructure in NY has most often occurred in exurban communities and suburban developments that are less dense than traditional urban cores. Here, we examine the role of size and capacity utilization on wastewater treatment effectiveness with respect to critical effluent parameters, and additionally explore which common facility engineering controls influence water quality treatment using a unique dataset of descriptive information. Our results challenge conventional wisdom, suggesting that the largest facilities (>30,000 m3/d), not the smallest (<300 m3/d), discharge TSS, BOD, and coliform at significantly higher relative effluent concentrations (i.e., the ratio of discharged concentrations to allowable limits). Capacity utilization was also positively correlated to higher concentrations of TSS, BOD, and coliform effluent concentrations in larger facilities, though those concentrations were often within regulated limits. This implies that smaller-sized facilities may perform better in terms of environmental quality, but that the largest facilities demonstrate efficiency in the sense that they are not “over-treating” wastewater while avoiding violations. Results from NY suggest that medium sized facilities (300–30,000 m3/d) are sophisticated enough to incorporate appropriate unit processes, and employ operators with sufficient training and oversight, to reach treatment outcomes that are both reliable and of high quality. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Water Research Elsevier

Is bigger better? Driving factors of POTW performance in New York

Loading next page...
 
/lp/elsevier/is-bigger-better-driving-factors-of-potw-performance-in-new-york-XELxWcULT8
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0043-1354
D.O.I.
10.1016/j.watres.2018.02.024
Publisher site
See Article on Publisher Site

Abstract

Like many regions around the world, New York State, USA, faces challenges in meeting wastewater treatment quality standards because of aging infrastructure, limited funding, shifting demographics and increasingly stringent environmental regulations. In recent decades construction of new wastewater treatment and distribution infrastructure in NY has most often occurred in exurban communities and suburban developments that are less dense than traditional urban cores. Here, we examine the role of size and capacity utilization on wastewater treatment effectiveness with respect to critical effluent parameters, and additionally explore which common facility engineering controls influence water quality treatment using a unique dataset of descriptive information. Our results challenge conventional wisdom, suggesting that the largest facilities (>30,000 m3/d), not the smallest (<300 m3/d), discharge TSS, BOD, and coliform at significantly higher relative effluent concentrations (i.e., the ratio of discharged concentrations to allowable limits). Capacity utilization was also positively correlated to higher concentrations of TSS, BOD, and coliform effluent concentrations in larger facilities, though those concentrations were often within regulated limits. This implies that smaller-sized facilities may perform better in terms of environmental quality, but that the largest facilities demonstrate efficiency in the sense that they are not “over-treating” wastewater while avoiding violations. Results from NY suggest that medium sized facilities (300–30,000 m3/d) are sophisticated enough to incorporate appropriate unit processes, and employ operators with sufficient training and oversight, to reach treatment outcomes that are both reliable and of high quality.

Journal

Water ResearchElsevier

Published: May 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off