Iron released from reactive microglia by noggin improves myelin repair in the ischemic brain

Iron released from reactive microglia by noggin improves myelin repair in the ischemic brain We previously reported that the bone morphogenetic protein (BMP) antagonist, noggin, improved the repair process with an increase in the reactive microglia/macrophage population in the ischemic brain. Since BMP plays a role in intracellular iron homeostasis via the hepcidin/ferroportin axis, and iron is required for myelination, this study was aimed to determine whether noggin affected iron status and remyelination in the brain following ischemic stroke. We further examined the effect of blocking the BMP/hepcidin pathway on reactive microglia (BV2) and myelination of oligodendroglial cells (MO3.13) to define the link between microglial iron status and myelin formation. Following the noggin infusion into the ischemic brain of mice, the induction of hepcidin and ferritin protein levels decreased, and the number of myelinated axons and myelin thickness increased at 8 weeks after ischemic stroke. Noggin repressed the increase in hepcidin and ferritin levels in BV2 exposed to lipopolysaccharide (LPS) and oxygen/glucose deprivation and reperfusion (OGD/R). When MO3.13 were exposed to the conditioned media from noggin-treated BV2 (noggin CM) during reperfusion, OGD/R-induced MO3.13 cell death was reduced. Under normal conditions, noggin CM induced myelin production with an increase in ferritin levels in MO3.13, which was reversed by the iron chelator, deferoxamine. These results indicated that noggin altered the iron status in reactive microglia from the iron-storing to the iron-releasing phenotype, which contributed to myelin synthesis by providing iron. We suggest that the BMP/hepcidin pathway can be a target for the regulation of the iron status in microglia to enhance remyelination in the ischemic brain. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neuropharmacology Elsevier

Iron released from reactive microglia by noggin improves myelin repair in the ischemic brain

Loading next page...
 
/lp/elsevier/iron-released-from-reactive-microglia-by-noggin-improves-myelin-repair-K40GKfq0e0
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0028-3908
eISSN
1873-7064
D.O.I.
10.1016/j.neuropharm.2018.01.038
Publisher site
See Article on Publisher Site

Abstract

We previously reported that the bone morphogenetic protein (BMP) antagonist, noggin, improved the repair process with an increase in the reactive microglia/macrophage population in the ischemic brain. Since BMP plays a role in intracellular iron homeostasis via the hepcidin/ferroportin axis, and iron is required for myelination, this study was aimed to determine whether noggin affected iron status and remyelination in the brain following ischemic stroke. We further examined the effect of blocking the BMP/hepcidin pathway on reactive microglia (BV2) and myelination of oligodendroglial cells (MO3.13) to define the link between microglial iron status and myelin formation. Following the noggin infusion into the ischemic brain of mice, the induction of hepcidin and ferritin protein levels decreased, and the number of myelinated axons and myelin thickness increased at 8 weeks after ischemic stroke. Noggin repressed the increase in hepcidin and ferritin levels in BV2 exposed to lipopolysaccharide (LPS) and oxygen/glucose deprivation and reperfusion (OGD/R). When MO3.13 were exposed to the conditioned media from noggin-treated BV2 (noggin CM) during reperfusion, OGD/R-induced MO3.13 cell death was reduced. Under normal conditions, noggin CM induced myelin production with an increase in ferritin levels in MO3.13, which was reversed by the iron chelator, deferoxamine. These results indicated that noggin altered the iron status in reactive microglia from the iron-storing to the iron-releasing phenotype, which contributed to myelin synthesis by providing iron. We suggest that the BMP/hepcidin pathway can be a target for the regulation of the iron status in microglia to enhance remyelination in the ischemic brain.

Journal

NeuropharmacologyElsevier

Published: May 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off