Investigation of the scuffing characteristics of candidate materials for heavy duty diesel fuel injectors

Investigation of the scuffing characteristics of candidate materials for heavy duty diesel fuel... The objective of this study is to characterize and understand the evolutionary processes that produce changes in the friction and surface damage in materials for possible use as heavy duty diesel fuel injector plungers. This work has involved the development of test methods to impart reciprocating motion to various metals, ceramics, and coated specimens in the presence of diesel fuel-like fluids. Commercial and candidate plunger materials, including 52100 steel, zirconia, cermets (TiC in Ni 3 Al matrix), and TiN coatings, were evaluated on a crossed-cylinders-like scuffing test we call the ‘pin-on-twin’ geometry. Contacts were lubricated by on-highway #2 diesel and Jet A aviation fuels. Using friction-based criteria, the material ranking was in good agreement with field experience with actual injectors from the diesel engine industry. Zirconia and cermets exhibited promising scuffing resistance in both fuels. Scuffing generally became more severe in the Jet A fuel. Experimental results indicated that smoother surfaces that are required to sustain higher injection pressures could be more vulnerable to scuffing due to their thinner lubricant films. Material transfer was the major scuffing mechanism of zirconia, cermets, and TiN coatings against steel. Micro-scratches were also observed on the matrix material of cermets. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Tribology International Elsevier

Investigation of the scuffing characteristics of candidate materials for heavy duty diesel fuel injectors

Loading next page...
 
/lp/elsevier/investigation-of-the-scuffing-characteristics-of-candidate-materials-K8FoU2VjLN
Publisher
Elsevier
Copyright
Copyright © 2004 Elsevier Ltd
ISSN
0301-679X
eISSN
1879-2464
D.O.I.
10.1016/j.triboint.2004.08.018
Publisher site
See Article on Publisher Site

Abstract

The objective of this study is to characterize and understand the evolutionary processes that produce changes in the friction and surface damage in materials for possible use as heavy duty diesel fuel injector plungers. This work has involved the development of test methods to impart reciprocating motion to various metals, ceramics, and coated specimens in the presence of diesel fuel-like fluids. Commercial and candidate plunger materials, including 52100 steel, zirconia, cermets (TiC in Ni 3 Al matrix), and TiN coatings, were evaluated on a crossed-cylinders-like scuffing test we call the ‘pin-on-twin’ geometry. Contacts were lubricated by on-highway #2 diesel and Jet A aviation fuels. Using friction-based criteria, the material ranking was in good agreement with field experience with actual injectors from the diesel engine industry. Zirconia and cermets exhibited promising scuffing resistance in both fuels. Scuffing generally became more severe in the Jet A fuel. Experimental results indicated that smoother surfaces that are required to sustain higher injection pressures could be more vulnerable to scuffing due to their thinner lubricant films. Material transfer was the major scuffing mechanism of zirconia, cermets, and TiN coatings against steel. Micro-scratches were also observed on the matrix material of cermets.

Journal

Tribology InternationalElsevier

Published: Apr 1, 2005

References

  • Electrostatic monitoring of oil lubricated sliding point contacts for early detection of scuffing
    Tasbaz, O.D.; Wood, R.J.K.; Browne, M.; Powrie, H.E.G.; Denuault, G.
  • Electrostatic charge monitoring of unlubricated sliding wear of a bearing steel
    Morris, S.; Wood, R.J.K.; Harvey, T.J.; Powrie, H.E.G.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off