Investigation of the pulsatility of cerebrospinal fluid using cardiac-gated Intravoxel Incoherent Motion imaging

Investigation of the pulsatility of cerebrospinal fluid using cardiac-gated Intravoxel Incoherent... The quantitative and non-invasive monitoring of cerebrospinal fluid (CSF) dynamics and composition may have high clinical relevance in the management of CSF disorders. In this study, we propose the use of the Intravoxel Incoherent Motion (IVIM) MRI for obtaining simultaneous measurements of CSF self-diffusion and fluid circulation. The rationale for this study was that turbulent fluid and mesoscopic fluid fluctuations can be modeled in a first approximation as a fast diffusion process. In this case, we expect that the fast fluid circulation and slower molecular diffusion dynamics can be quantified, assuming a bi-exponential attenuation pattern of the diffusion-weighted signal in MRI.IVIM indexes of fast and slow diffusion measured at different sites of the CSF system were systematically evaluated depending on both the phase of the heart cycle and the direction of the diffusion-encoding. The IVIM measurements were compared to dynamic measurements of fluid circulation performed by phase-contrast MRI.Concerning the dependence on the diffusion/flow-encoding direction, similar patterns were found both in the fraction of fast diffusion, f, and in the fluid velocity. Generally, we observed a moderate to high correlation between the fraction of fast diffusion and the maximum fluid velocity along the high-flow directions. Exploratory data analysis detected similarities in the dependency of the fraction of fast diffusion and of the velocity from the phase of the cardiac cycle. However, no significant differences were found between parameters measured during different phases of the cardiac cycle.Our results suggest that the fraction of fast diffusion may reflect CSF circulation. The bi-exponential IVIM model potentially allows us to disentangle the two diffusion components of the CSF dynamics by providing measurements of fluid cellularity (via the slow-diffusion coefficient) and circulation (via the fraction of fast-diffusion index). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neuroimage Elsevier

Investigation of the pulsatility of cerebrospinal fluid using cardiac-gated Intravoxel Incoherent Motion imaging

Loading next page...
 
/lp/elsevier/investigation-of-the-pulsatility-of-cerebrospinal-fluid-using-cardiac-KazIqXdDOR
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
1053-8119
eISSN
1095-9572
D.O.I.
10.1016/j.neuroimage.2017.12.017
Publisher site
See Article on Publisher Site

Abstract

The quantitative and non-invasive monitoring of cerebrospinal fluid (CSF) dynamics and composition may have high clinical relevance in the management of CSF disorders. In this study, we propose the use of the Intravoxel Incoherent Motion (IVIM) MRI for obtaining simultaneous measurements of CSF self-diffusion and fluid circulation. The rationale for this study was that turbulent fluid and mesoscopic fluid fluctuations can be modeled in a first approximation as a fast diffusion process. In this case, we expect that the fast fluid circulation and slower molecular diffusion dynamics can be quantified, assuming a bi-exponential attenuation pattern of the diffusion-weighted signal in MRI.IVIM indexes of fast and slow diffusion measured at different sites of the CSF system were systematically evaluated depending on both the phase of the heart cycle and the direction of the diffusion-encoding. The IVIM measurements were compared to dynamic measurements of fluid circulation performed by phase-contrast MRI.Concerning the dependence on the diffusion/flow-encoding direction, similar patterns were found both in the fraction of fast diffusion, f, and in the fluid velocity. Generally, we observed a moderate to high correlation between the fraction of fast diffusion and the maximum fluid velocity along the high-flow directions. Exploratory data analysis detected similarities in the dependency of the fraction of fast diffusion and of the velocity from the phase of the cardiac cycle. However, no significant differences were found between parameters measured during different phases of the cardiac cycle.Our results suggest that the fraction of fast diffusion may reflect CSF circulation. The bi-exponential IVIM model potentially allows us to disentangle the two diffusion components of the CSF dynamics by providing measurements of fluid cellularity (via the slow-diffusion coefficient) and circulation (via the fraction of fast-diffusion index).

Journal

NeuroimageElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial