Investigation of a compact copper–water loop heap pipe with a flat evaporator

Investigation of a compact copper–water loop heap pipe with a flat evaporator A compact copper–water loop heat pipe (LHP) with an effective length of 310 mm equipped with a flat–oval evaporator measuring 80 ( L ) × 42 ( W ) × 7 ( H ) has been tested. The vapor line and the condenser had the same internal diameter of 5.4 mm. The internal diameter of the liquid line was 3.4 mm. Tests were conducted with a heat source which had a heating surface of 30 mm × 30 mm. The condenser was cooled by running water with a temperature of 20 °C. In the horizontal position the device has exhibited serviceability in the heat load range from 5 W to 1200 W at vapor temperatures from 26.5 °C to 103.4 °C. The maximum capacity was achieved at a heat source temperature of 143.5 °C, when the LHP thermal resistance was equal to 0.044 °C/W. The corresponding values of thermal resistance for the evaporator and the condenser were at a level of 0.006 °C/W and 0.038 °C/W. A minimum thermal resistance of 0.097 °C/W for the “heat source–LHP–cooling water” system was obtained at a heat load of about 700 W, at which the temperature of the heat source was 87 °C. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Thermal Engineering Elsevier

Investigation of a compact copper–water loop heap pipe with a flat evaporator

Loading next page...
 
/lp/elsevier/investigation-of-a-compact-copper-water-loop-heap-pipe-with-a-flat-DW0U2JOXSF
Publisher
Elsevier
Copyright
Copyright © 2011 Elsevier Ltd
ISSN
1359-4311
eISSN
1873-5606
D.O.I.
10.1016/j.applthermaleng.2011.07.008
Publisher site
See Article on Publisher Site

Abstract

A compact copper–water loop heat pipe (LHP) with an effective length of 310 mm equipped with a flat–oval evaporator measuring 80 ( L ) × 42 ( W ) × 7 ( H ) has been tested. The vapor line and the condenser had the same internal diameter of 5.4 mm. The internal diameter of the liquid line was 3.4 mm. Tests were conducted with a heat source which had a heating surface of 30 mm × 30 mm. The condenser was cooled by running water with a temperature of 20 °C. In the horizontal position the device has exhibited serviceability in the heat load range from 5 W to 1200 W at vapor temperatures from 26.5 °C to 103.4 °C. The maximum capacity was achieved at a heat source temperature of 143.5 °C, when the LHP thermal resistance was equal to 0.044 °C/W. The corresponding values of thermal resistance for the evaporator and the condenser were at a level of 0.006 °C/W and 0.038 °C/W. A minimum thermal resistance of 0.097 °C/W for the “heat source–LHP–cooling water” system was obtained at a heat load of about 700 W, at which the temperature of the heat source was 87 °C.

Journal

Applied Thermal EngineeringElsevier

Published: Nov 1, 2011

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off