Investigating relationships between cost and CO2 emissions in reinforced concrete structures using a BIM-based design optimisation approach

Investigating relationships between cost and CO2 emissions in reinforced concrete structures... An integrated design approach for the cost and embodied carbon optimisation of reinforced concrete structures is presented in this paper to inform early design decisions. A BIM-based optimisation approach that utilises Finite Element Modelling (FEM) and a multi-objective genetic algorithm with constructability constraints is established for that purpose. A multilevel engineering analysis model is developed to perform structural layout optimisation, slab and columns sizing optimisation, and slab and columns reinforcement optimisation. The overall approach is validated using real buildings and the relationships between cost and carbon optimum solutions are explored. The study exhibits how cost effective and carbon efficient solutions could be obtained without compromising the feasibility of the optimised designs. Results demonstrate that the structural layout and the slab thickness are amongst the most important design optimisation parameters. Finally, the overall analysis suggests that the building form can influence the relationships between cost and carbon for the different structural components. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Energy and Buildings Elsevier

Investigating relationships between cost and CO2 emissions in reinforced concrete structures using a BIM-based design optimisation approach

Loading next page...
 
/lp/elsevier/investigating-relationships-between-cost-and-co2-emissions-in-PDZqC23ea1
Publisher
Elsevier
Copyright
Copyright © 2018 The Authors
ISSN
0378-7788
eISSN
1872-6178
D.O.I.
10.1016/j.enbuild.2018.01.059
Publisher site
See Article on Publisher Site

Abstract

An integrated design approach for the cost and embodied carbon optimisation of reinforced concrete structures is presented in this paper to inform early design decisions. A BIM-based optimisation approach that utilises Finite Element Modelling (FEM) and a multi-objective genetic algorithm with constructability constraints is established for that purpose. A multilevel engineering analysis model is developed to perform structural layout optimisation, slab and columns sizing optimisation, and slab and columns reinforcement optimisation. The overall approach is validated using real buildings and the relationships between cost and carbon optimum solutions are explored. The study exhibits how cost effective and carbon efficient solutions could be obtained without compromising the feasibility of the optimised designs. Results demonstrate that the structural layout and the slab thickness are amongst the most important design optimisation parameters. Finally, the overall analysis suggests that the building form can influence the relationships between cost and carbon for the different structural components.

Journal

Energy and BuildingsElsevier

Published: May 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial