Inverted polymer bulk heterojunction solar cells with ink-jet printed electron transport and active layers

Inverted polymer bulk heterojunction solar cells with ink-jet printed electron transport and... Ink-jet printing is a potentially attractive technique for printing of components for organic electronic devices primarily due to its ability to print patterned layers and reduced ink wastage. However, the mechanism of film formation is quite complex and needs an understanding of various printing parameters on the film growth. In this manuscript, we successfully demonstrate ink-jet printing of smooth zinc oxide (ZnO) thin films with controlled thickness as electron transport layers for inverted organic solar cell devices fabricated on indium tin oxide coated glass substrates. The parameters that strongly affect the formation of a continuous ZnO thin film with controlled thickness are ink concentration and viscosity, substrate surface treatment, drop spacing, substrate temperature during printing and the annealing temperature, affected by a combination of surface energetics, surface tension of the ink and the rate of solvent evaporation. The results suggest that one can achieve a transmittance of >85% for a 45 nm thin ZnO film possessing uniform structure and morphology, fabricated using a drop spacing of 40–50 μm at an ink viscosity of 4.70 cP with substrate held at room temperature. The P3HT:PC61BM inverted organic solar cell devices fabricated using printed ZnO films as electron transporting layers exhibit an efficiency of ∼3.4–3.5%, comparable to that shown by the devices fabricated on spin coated ZnO films. Finally, the device with printed P3HT:PC61BM active layer on printed ZnO layer showed a device efficiency of ca. 3.2% suggesting that nearly completely printed devices can deliver a comparable performance to the spin coated devices. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Organic Electronics Elsevier

Inverted polymer bulk heterojunction solar cells with ink-jet printed electron transport and active layers

Loading next page...
 
/lp/elsevier/inverted-polymer-bulk-heterojunction-solar-cells-with-ink-jet-printed-F0h0tAn6A2
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier B.V.
ISSN
1566-1199
D.O.I.
10.1016/j.orgel.2016.05.015
Publisher site
See Article on Publisher Site

Abstract

Ink-jet printing is a potentially attractive technique for printing of components for organic electronic devices primarily due to its ability to print patterned layers and reduced ink wastage. However, the mechanism of film formation is quite complex and needs an understanding of various printing parameters on the film growth. In this manuscript, we successfully demonstrate ink-jet printing of smooth zinc oxide (ZnO) thin films with controlled thickness as electron transport layers for inverted organic solar cell devices fabricated on indium tin oxide coated glass substrates. The parameters that strongly affect the formation of a continuous ZnO thin film with controlled thickness are ink concentration and viscosity, substrate surface treatment, drop spacing, substrate temperature during printing and the annealing temperature, affected by a combination of surface energetics, surface tension of the ink and the rate of solvent evaporation. The results suggest that one can achieve a transmittance of >85% for a 45 nm thin ZnO film possessing uniform structure and morphology, fabricated using a drop spacing of 40–50 μm at an ink viscosity of 4.70 cP with substrate held at room temperature. The P3HT:PC61BM inverted organic solar cell devices fabricated using printed ZnO films as electron transporting layers exhibit an efficiency of ∼3.4–3.5%, comparable to that shown by the devices fabricated on spin coated ZnO films. Finally, the device with printed P3HT:PC61BM active layer on printed ZnO layer showed a device efficiency of ca. 3.2% suggesting that nearly completely printed devices can deliver a comparable performance to the spin coated devices.

Journal

Organic ElectronicsElsevier

Published: Aug 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off