Intrinsic charge carrier mobility in single-crystal OFET by “fast trapping vs. slow detrapping” model

Intrinsic charge carrier mobility in single-crystal OFET by “fast trapping vs. slow... This study investigates the gate stress-induced mobility discrepancy in p-type single-crystal organic field-effect transistors (OFETs) on an octyltrichlorosilane (OTS)-modified SiO2/Si substrate. During measurements in atmosphere, anti-clockwise hysteresis was observed in the transfer curve, and the mobility calculated from the forward sweep was smaller than that calculated from the reverse sweep. Hysteresis has often been observed for OFETs but the mobility discrepancy has not been clearly understood. We formulated a “fast trapping vs. slow detrapping” model and suggested that the mobility values calculated from the reverse sweep represent the intrinsic property of the material. To verify the validity of this model, we investigated mobility anisotropy of an air-stable organic semiconductor, 2,7-bis(4-methoxyphenyl)benzo[b]benzo[4,5]thieno[2,3-d]thiophene (DBOP-BTBT). By measuring the single-crystal OFET characteristics of many crystals with different orientations, we observed anisotropic hole mobility calculated from the reverse sweep. The mobility along the b-axis, which corresponds to the π-π stacking direction, was 13.9 cm2 V−1 s−1, and that along the a-axis was 6.2 cm2 V−1 s−1. However, we did not see clear anisotropy when mobility was calculated from the forward sweep due to a variation in the data. The threshold voltage from the reverse and the forward sweeps showed isotropic characteristics within the range from −60 to −70 V and from −50 to −60 V, respectively. These results indicate that the numbers of filled traps were different between the reverse and the forward sweeps at the interface, and confirm the validity of our model. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Organic Electronics Elsevier

Intrinsic charge carrier mobility in single-crystal OFET by “fast trapping vs. slow detrapping” model

Loading next page...
 
/lp/elsevier/intrinsic-charge-carrier-mobility-in-single-crystal-ofet-by-fast-8tDijb87LS
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
1566-1199
D.O.I.
10.1016/j.orgel.2017.12.042
Publisher site
See Article on Publisher Site

Abstract

This study investigates the gate stress-induced mobility discrepancy in p-type single-crystal organic field-effect transistors (OFETs) on an octyltrichlorosilane (OTS)-modified SiO2/Si substrate. During measurements in atmosphere, anti-clockwise hysteresis was observed in the transfer curve, and the mobility calculated from the forward sweep was smaller than that calculated from the reverse sweep. Hysteresis has often been observed for OFETs but the mobility discrepancy has not been clearly understood. We formulated a “fast trapping vs. slow detrapping” model and suggested that the mobility values calculated from the reverse sweep represent the intrinsic property of the material. To verify the validity of this model, we investigated mobility anisotropy of an air-stable organic semiconductor, 2,7-bis(4-methoxyphenyl)benzo[b]benzo[4,5]thieno[2,3-d]thiophene (DBOP-BTBT). By measuring the single-crystal OFET characteristics of many crystals with different orientations, we observed anisotropic hole mobility calculated from the reverse sweep. The mobility along the b-axis, which corresponds to the π-π stacking direction, was 13.9 cm2 V−1 s−1, and that along the a-axis was 6.2 cm2 V−1 s−1. However, we did not see clear anisotropy when mobility was calculated from the forward sweep due to a variation in the data. The threshold voltage from the reverse and the forward sweeps showed isotropic characteristics within the range from −60 to −70 V and from −50 to −60 V, respectively. These results indicate that the numbers of filled traps were different between the reverse and the forward sweeps at the interface, and confirm the validity of our model.

Journal

Organic ElectronicsElsevier

Published: Mar 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off