Intriguing changes in molecular size and composition of dissolved organic matter induced by microbial degradation and self-assembly

Intriguing changes in molecular size and composition of dissolved organic matter induced by... Dissolved organic matter (DOM) is ubiquitous and plays an important role in regulating water quality, ecological function, and the fate and transport of trace elements and pollutants in aquatic environments. Both the colloidal precursors (i.e. <1 kDa) and bulk DOM collected from a freshwater estuary were incubated in the dark for 21 days to examine dynamic changes in molecular size and composition induced by microbial degradation and self-assembly. Results showed that the concentrations of total organic carbon, carbohydrates, and protein-like substances decreased by 11–30% during incubation, while those of humic- and fulvic-like substances remained relatively constant, indicating humic substances are more resistant to microbial utilization compared to carbohydrates and protein-like DOM. Despite the different extents in decline, these DOM components had a similar transformation pathway from the <1 kDa to colloids (1 kDa–0.45 μm) and further to microparticles (>0.45 μm). Overall, carbohydrates and protein-like substances, especially the high molecular weight components, were preferentially decomposed by microorganisms whereas humic- and fulvic-like DOM components significantly coagulated through abiotic self-assembly. The contrasting degradation/transformation pathways between the humic-like and protein-like substances along the size continuum, as also characterized by flow field-flow fractionation analysis, demonstrated that the dynamic transformation and degradation of DOM is regulated by both molecular size and organic composition. This finding provides new insights into the biogeochemical cycling pathways of heterogeneous DOM and its environmental fate and ecological role in aquatic systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Water Research Elsevier

Intriguing changes in molecular size and composition of dissolved organic matter induced by microbial degradation and self-assembly

Loading next page...
 
/lp/elsevier/intriguing-changes-in-molecular-size-and-composition-of-dissolved-c08eUDfFti
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0043-1354
D.O.I.
10.1016/j.watres.2018.02.016
Publisher site
See Article on Publisher Site

Abstract

Dissolved organic matter (DOM) is ubiquitous and plays an important role in regulating water quality, ecological function, and the fate and transport of trace elements and pollutants in aquatic environments. Both the colloidal precursors (i.e. <1 kDa) and bulk DOM collected from a freshwater estuary were incubated in the dark for 21 days to examine dynamic changes in molecular size and composition induced by microbial degradation and self-assembly. Results showed that the concentrations of total organic carbon, carbohydrates, and protein-like substances decreased by 11–30% during incubation, while those of humic- and fulvic-like substances remained relatively constant, indicating humic substances are more resistant to microbial utilization compared to carbohydrates and protein-like DOM. Despite the different extents in decline, these DOM components had a similar transformation pathway from the <1 kDa to colloids (1 kDa–0.45 μm) and further to microparticles (>0.45 μm). Overall, carbohydrates and protein-like substances, especially the high molecular weight components, were preferentially decomposed by microorganisms whereas humic- and fulvic-like DOM components significantly coagulated through abiotic self-assembly. The contrasting degradation/transformation pathways between the humic-like and protein-like substances along the size continuum, as also characterized by flow field-flow fractionation analysis, demonstrated that the dynamic transformation and degradation of DOM is regulated by both molecular size and organic composition. This finding provides new insights into the biogeochemical cycling pathways of heterogeneous DOM and its environmental fate and ecological role in aquatic systems.

Journal

Water ResearchElsevier

Published: May 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off