Intracranial high-γ connectivity distinguishes wakefulness from sleep

Intracranial high-γ connectivity distinguishes wakefulness from sleep Neural synchrony in the γ-band is considered a fundamental process in cortical computation and communication and it has also been proposed as a crucial correlate of consciousness. However, the latter claim remains inconclusive, mainly due to methodological limitations, such as the spectral constraints of scalp-level electroencephalographic recordings or volume-conduction confounds. Here, we circumvented these caveats by comparing γ-band connectivity between two global states of consciousness via intracranial electroencephalography (iEEG), which provides the most reliable measurements of high-frequency activity in the human brain. Non-REM Sleep recordings were compared to passive-wakefulness recordings of the same duration in three subjects with surgically implanted electrodes. Signals were analyzed through the weighted Phase Lag Index connectivity measure and relevant graph theory metrics. We found that connectivity in the high-γ range (90–120 Hz), as well as relevant graph theory properties, were higher during wakefulness than during sleep and discriminated between conditions better than any other canonical frequency band. Our results constitute the first report of iEEG differences between wakefulness and sleep in the high-γ range at both local and distant sites, highlighting the utility of this technique in the search for the neural correlates of global states of consciousness. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neuroimage Elsevier

Loading next page...
 
/lp/elsevier/intracranial-high-connectivity-distinguishes-wakefulness-from-sleep-QWf6K0Cf4K
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Inc.
ISSN
1053-8119
eISSN
1095-9572
D.O.I.
10.1016/j.neuroimage.2017.12.015
Publisher site
See Article on Publisher Site

Abstract

Neural synchrony in the γ-band is considered a fundamental process in cortical computation and communication and it has also been proposed as a crucial correlate of consciousness. However, the latter claim remains inconclusive, mainly due to methodological limitations, such as the spectral constraints of scalp-level electroencephalographic recordings or volume-conduction confounds. Here, we circumvented these caveats by comparing γ-band connectivity between two global states of consciousness via intracranial electroencephalography (iEEG), which provides the most reliable measurements of high-frequency activity in the human brain. Non-REM Sleep recordings were compared to passive-wakefulness recordings of the same duration in three subjects with surgically implanted electrodes. Signals were analyzed through the weighted Phase Lag Index connectivity measure and relevant graph theory metrics. We found that connectivity in the high-γ range (90–120 Hz), as well as relevant graph theory properties, were higher during wakefulness than during sleep and discriminated between conditions better than any other canonical frequency band. Our results constitute the first report of iEEG differences between wakefulness and sleep in the high-γ range at both local and distant sites, highlighting the utility of this technique in the search for the neural correlates of global states of consciousness.

Journal

NeuroimageElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial