Intracerebroventricular streptozotocin impairs adult neurogenesis and cognitive functions via regulating neuroinflammation and insulin signaling in adult rats

Intracerebroventricular streptozotocin impairs adult neurogenesis and cognitive functions via... Neurogenesis is a complex process involved in memory formation and is known to be altered in Alzheimer's disease (AD). Neuroinflammation and insulin signaling dysfunction, key players during intracerebroventricular Streptozotocin (ICV-STZ) induced dementia variedly affects neurogenesis. The aim of this work was to study the variation in neurogenic process associated with AD in ICV STZ induced dementia. Adult male Sprague Dawley rats weighing 180–200 g were given two different doses of ICV STZ (3 mg/kg on Day 1 and 3, & 1 mg/kg on Day 1) in two different experimental setup. Memory functions were assessed by Morris Water Maze. Immunofluorescence and western blotting was done to study the variation in neurogenesis, amyloid and tau pathology, neuroinflammation and insulin signaling. ICV STZ 6 mg/kg (3 mg/kg twice on Day 1 and 3 of 21 days study) caused impairment in learning and memory and severe atrophy of the neurogenic areas. Modified dose of ICV STZ (1 mg/kg once on Day 1) caused a significant decline in neurogenesis in subventricular zone (SVZ) and dentate gyrus (DG) as indicated by decrease in the number of (5-Bromo-2′-deoxyuridine) BrdU+ Nestin+ cells, Doublecortin (DCX+) cells and BrdU+ NeuN+ cells after day 11 and 18 of ICV STZ injection. However, impairment in learning and memory was observed only during 18 days study post ICV STZ injection (1 mg/kg on Day 1). Up regulation of proteins of amyloid and tau pathology (Amyloid precursor protein (APP), β site amyloid precursor protein cleaving enzyme 1 (BACE1) & p-Tau Ser 396) was observed at this time point with no significant change in amyloid β42 (Aβ42) expression. Enhanced neuroinflammation (increased Glial fibrillary acidic protein (GFAP) & nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB)) and diminished insulin signaling was also observed in our study in both neurogenic areas, however the extent to which they may have negative impact on neurogenes is yet to be explored. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neurochemistry International Elsevier

Intracerebroventricular streptozotocin impairs adult neurogenesis and cognitive functions via regulating neuroinflammation and insulin signaling in adult rats

Loading next page...
 
/lp/elsevier/intracerebroventricular-streptozotocin-impairs-adult-neurogenesis-and-ONLhLWFrTM
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0197-0186
D.O.I.
10.1016/j.neuint.2017.11.012
Publisher site
See Article on Publisher Site

Abstract

Neurogenesis is a complex process involved in memory formation and is known to be altered in Alzheimer's disease (AD). Neuroinflammation and insulin signaling dysfunction, key players during intracerebroventricular Streptozotocin (ICV-STZ) induced dementia variedly affects neurogenesis. The aim of this work was to study the variation in neurogenic process associated with AD in ICV STZ induced dementia. Adult male Sprague Dawley rats weighing 180–200 g were given two different doses of ICV STZ (3 mg/kg on Day 1 and 3, & 1 mg/kg on Day 1) in two different experimental setup. Memory functions were assessed by Morris Water Maze. Immunofluorescence and western blotting was done to study the variation in neurogenesis, amyloid and tau pathology, neuroinflammation and insulin signaling. ICV STZ 6 mg/kg (3 mg/kg twice on Day 1 and 3 of 21 days study) caused impairment in learning and memory and severe atrophy of the neurogenic areas. Modified dose of ICV STZ (1 mg/kg once on Day 1) caused a significant decline in neurogenesis in subventricular zone (SVZ) and dentate gyrus (DG) as indicated by decrease in the number of (5-Bromo-2′-deoxyuridine) BrdU+ Nestin+ cells, Doublecortin (DCX+) cells and BrdU+ NeuN+ cells after day 11 and 18 of ICV STZ injection. However, impairment in learning and memory was observed only during 18 days study post ICV STZ injection (1 mg/kg on Day 1). Up regulation of proteins of amyloid and tau pathology (Amyloid precursor protein (APP), β site amyloid precursor protein cleaving enzyme 1 (BACE1) & p-Tau Ser 396) was observed at this time point with no significant change in amyloid β42 (Aβ42) expression. Enhanced neuroinflammation (increased Glial fibrillary acidic protein (GFAP) & nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB)) and diminished insulin signaling was also observed in our study in both neurogenic areas, however the extent to which they may have negative impact on neurogenes is yet to be explored.

Journal

Neurochemistry InternationalElsevier

Published: Feb 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off