Interligand electron transfer as a reason of very weak red luminescence of Eu((i-Bu)2PS2)3Phen and Eu(C4H8NCS2)3Phen complexes

Interligand electron transfer as a reason of very weak red luminescence of Eu((i-Bu)2PS2)3Phen... Nanosecond laser flash photolysis and time resolved luminescence were used to study the photophysical processes for Eu((i-Bu)2PS2)3Phen (1) and Eu(C4H8NCS2)3Phen (2) complexes in acetonitrile. These complexes show a very weak red Eu3+ luminescence in spite of the fact that the phenanthroline molecule in triplet state is a good antenna to excite the red luminescence of many Eu(III)-Phen complexes. To determine the reasons of this effect the photoprocesses in solutions, containing the (i-Bu)2PS2− or C4H8NCS2− ions and free phenanthroline molecule, have been studied with the use of laser flash photolysis (266nm). It was shown that the phenanthroline in triplet excited state (TPhen*) deprives the electron from these dithiolate ions with a high rate constants close to 109M−1s−1. The transient spectra of phenanthroline anion-radical and dithiolate radicals were recorded which are in a good agreement with literature data. Since the effective concentration of dithiolate ions (L−) in the coordination sphere of 1 and 2 complexes is close to 10M the time of electron transfer between L− and TPhen* is in the range of 100ps or less. As the laser flash photolysis of solutions of 1 and 2 complexes with a 10ns time resolution failed to detect the spectra of phenanthroline anion-radical and dithiolate radicals, it indicates that the time of back electron transfer is less than 10−8s. Thus, the very weak red luminescence of 1 and 2 complexes is due to the electron transfer between ligands in the coordination sphere which successfully suppresses the energy transfer from the phenanthroline triplet state to Eu3+ ion. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Luminescence Elsevier

Interligand electron transfer as a reason of very weak red luminescence of Eu((i-Bu)2PS2)3Phen and Eu(C4H8NCS2)3Phen complexes

Loading next page...
 
/lp/elsevier/interligand-electron-transfer-as-a-reason-of-very-weak-red-MB5ebenWkJ
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier B.V.
ISSN
0022-2313
eISSN
1872-7883
D.O.I.
10.1016/j.jlumin.2016.03.007
Publisher site
See Article on Publisher Site

Abstract

Nanosecond laser flash photolysis and time resolved luminescence were used to study the photophysical processes for Eu((i-Bu)2PS2)3Phen (1) and Eu(C4H8NCS2)3Phen (2) complexes in acetonitrile. These complexes show a very weak red Eu3+ luminescence in spite of the fact that the phenanthroline molecule in triplet state is a good antenna to excite the red luminescence of many Eu(III)-Phen complexes. To determine the reasons of this effect the photoprocesses in solutions, containing the (i-Bu)2PS2− or C4H8NCS2− ions and free phenanthroline molecule, have been studied with the use of laser flash photolysis (266nm). It was shown that the phenanthroline in triplet excited state (TPhen*) deprives the electron from these dithiolate ions with a high rate constants close to 109M−1s−1. The transient spectra of phenanthroline anion-radical and dithiolate radicals were recorded which are in a good agreement with literature data. Since the effective concentration of dithiolate ions (L−) in the coordination sphere of 1 and 2 complexes is close to 10M the time of electron transfer between L− and TPhen* is in the range of 100ps or less. As the laser flash photolysis of solutions of 1 and 2 complexes with a 10ns time resolution failed to detect the spectra of phenanthroline anion-radical and dithiolate radicals, it indicates that the time of back electron transfer is less than 10−8s. Thus, the very weak red luminescence of 1 and 2 complexes is due to the electron transfer between ligands in the coordination sphere which successfully suppresses the energy transfer from the phenanthroline triplet state to Eu3+ ion.

Journal

Journal of LuminescenceElsevier

Published: Aug 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial