Interleukin-6 protects cultured cerebellar granule neurons against glutamate-induced neurotoxicity

Interleukin-6 protects cultured cerebellar granule neurons against glutamate-induced neurotoxicity Cytokine interleukin-6 (IL-6) has been showed to be an important mediator of neuroimmune responses. However, effects of IL-6 in the central nervous system (CNS) are quite complex and diverse, and mechanisms through which IL-6 influences neuronal functions are primarily unknown. In the present study, we explored protective effect of IL-6 that was chronically applied to cerebellar granule neurons (CGNs) in culture against neurodamage induced by glutamate and mechanisms involved in the neuroprotective effect of IL-6. The chronic IL-6 exposure significantly prevented the CGNs from the glutamate-induced attenuation of neuronal vitality. This neuroprotective effect of IL-6 depended on its concentrations. IL-6 at 2.5 ng/ml did not markedly improve the neuronal vitality, but IL-6 at 5 and 10 ng/ml notably improved the neuronal vitality. The glutamate-evoked neuronal apoptosis also was strikingly inhibited by the chronic IL-6 pretreatment. Intracellular Ca 2+ in the CGNs lacking IL-6 pretreatment acutely rose as soon as these neurons were stimulated by glutamate and were maintained at higher levels during the whole 18-min period of glutamate attack. Although intracellular Ca 2+ in the IL-6-pretreated CGNs also produced an acute and transient elevation in response to the glutamate insult, they quickly dropped and recovered to basal levels before the glutamate application. Anti-gp130 monoclonal antibody (mAb) blocked the suppressive effect of IL-6 on the glutamate-induced intracellular Ca 2+ overload. These results reveal that IL-6 can protect neurons against glutamate-induced neurotoxicity, and suggest that the neuroprotective effect of IL-6 may be via gp130 signal transducing pathway to suppress the glutamate-evoked intracellular Ca 2+ overload. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neuroscience Letters Elsevier

Interleukin-6 protects cultured cerebellar granule neurons against glutamate-induced neurotoxicity

Loading next page...
 
/lp/elsevier/interleukin-6-protects-cultured-cerebellar-granule-neurons-against-8L23oOya0G
Publisher
Elsevier
Copyright
Copyright © 2004 Elsevier Ireland Ltd
ISSN
0304-3940
D.O.I.
10.1016/j.neulet.2004.10.069
Publisher site
See Article on Publisher Site

Abstract

Cytokine interleukin-6 (IL-6) has been showed to be an important mediator of neuroimmune responses. However, effects of IL-6 in the central nervous system (CNS) are quite complex and diverse, and mechanisms through which IL-6 influences neuronal functions are primarily unknown. In the present study, we explored protective effect of IL-6 that was chronically applied to cerebellar granule neurons (CGNs) in culture against neurodamage induced by glutamate and mechanisms involved in the neuroprotective effect of IL-6. The chronic IL-6 exposure significantly prevented the CGNs from the glutamate-induced attenuation of neuronal vitality. This neuroprotective effect of IL-6 depended on its concentrations. IL-6 at 2.5 ng/ml did not markedly improve the neuronal vitality, but IL-6 at 5 and 10 ng/ml notably improved the neuronal vitality. The glutamate-evoked neuronal apoptosis also was strikingly inhibited by the chronic IL-6 pretreatment. Intracellular Ca 2+ in the CGNs lacking IL-6 pretreatment acutely rose as soon as these neurons were stimulated by glutamate and were maintained at higher levels during the whole 18-min period of glutamate attack. Although intracellular Ca 2+ in the IL-6-pretreated CGNs also produced an acute and transient elevation in response to the glutamate insult, they quickly dropped and recovered to basal levels before the glutamate application. Anti-gp130 monoclonal antibody (mAb) blocked the suppressive effect of IL-6 on the glutamate-induced intracellular Ca 2+ overload. These results reveal that IL-6 can protect neurons against glutamate-induced neurotoxicity, and suggest that the neuroprotective effect of IL-6 may be via gp130 signal transducing pathway to suppress the glutamate-evoked intracellular Ca 2+ overload.

Journal

Neuroscience LettersElsevier

Published: Feb 21, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off