Interfacial microstructure characterization and mechanical behavior of NiTi fiber reinforced Al3Ti composite

Interfacial microstructure characterization and mechanical behavior of NiTi fiber reinforced... To improve the ductility of Al3Ti alloy, the continuous shape memory alloy NiTi fiber (CSMAR) was introduced into intermetallic Al3Ti matrix for fabricating the novel CSMAR-Al3Ti composite in this work. Microstructure characterizations demonstrated that the CSMAR-Al3Ti composite mainly consists of Al3Ti layer, NiTi fiber, eutectic area and interfacial reaction layer. EBSD results indicated that the eutectic area is made up of Al3Ti and Al3Ni phases, the Al3Ti phase shows a strong [001] crystallographic oriented structure, while the Al3Ni phase has a non-textured structure. TEM results showed that the interfacial reaction layer between NiTi fiber and eutectic area is a multiple phase mixture, including various Ti-Al and Ni-Al intermetallics. Furthermore, TEM and HRTEM analyses revealed a newly formed Ti2Ni layer between NiTi fiber and interfacial reaction layer. Tensile test results confirmed that the CSMAR-Al3Ti composite could effectively improve the ductility of the Al3Ti alloy. Based on the systematic investigations of interfacial microstructure characterization, mechanical behavior and fracture morphology observation, it is found that the toughening mechanism of CSMAR-Al3Ti composite is related to the interfacial fine grain strengthening effect with the gradual distribution characteristic. In addition, the excellent metallurgical bonding between fiber reinforcement and matrix is also beneficial to the mechanical properties. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Materials & design Elsevier

Interfacial microstructure characterization and mechanical behavior of NiTi fiber reinforced Al3Ti composite

Loading next page...
 
/lp/elsevier/interfacial-microstructure-characterization-and-mechanical-behavior-of-iQlB9bC3yP
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0264-1275
eISSN
0141-5530
D.O.I.
10.1016/j.matdes.2018.01.060
Publisher site
See Article on Publisher Site

Abstract

To improve the ductility of Al3Ti alloy, the continuous shape memory alloy NiTi fiber (CSMAR) was introduced into intermetallic Al3Ti matrix for fabricating the novel CSMAR-Al3Ti composite in this work. Microstructure characterizations demonstrated that the CSMAR-Al3Ti composite mainly consists of Al3Ti layer, NiTi fiber, eutectic area and interfacial reaction layer. EBSD results indicated that the eutectic area is made up of Al3Ti and Al3Ni phases, the Al3Ti phase shows a strong [001] crystallographic oriented structure, while the Al3Ni phase has a non-textured structure. TEM results showed that the interfacial reaction layer between NiTi fiber and eutectic area is a multiple phase mixture, including various Ti-Al and Ni-Al intermetallics. Furthermore, TEM and HRTEM analyses revealed a newly formed Ti2Ni layer between NiTi fiber and interfacial reaction layer. Tensile test results confirmed that the CSMAR-Al3Ti composite could effectively improve the ductility of the Al3Ti alloy. Based on the systematic investigations of interfacial microstructure characterization, mechanical behavior and fracture morphology observation, it is found that the toughening mechanism of CSMAR-Al3Ti composite is related to the interfacial fine grain strengthening effect with the gradual distribution characteristic. In addition, the excellent metallurgical bonding between fiber reinforcement and matrix is also beneficial to the mechanical properties.

Journal

Materials & designElsevier

Published: Apr 5, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off