Interactions between citrus pectin and Zn2+ or Ca2+ and associated in vitro Zn2+ bioaccessibility as affected by degree of methylesterification and blockiness

Interactions between citrus pectin and Zn2+ or Ca2+ and associated in vitro Zn2+... Insight into the effect of the degree and pattern of methylesterification of citrus pectin on the Ca2+ and Zn2+ adsorption capacity and the associated Zn2+ bioaccessibility was established. Pectins with comparable methylesterification degrees (DM) but different patterns of methylester distribution (blockwise or random) were generated. Blockwise distributions of methylesters were produced through controlled enzymatic means (using carrot pectin methylesterase) while random patterns were obtained through alkaline demethylesterification (using NaOH). The pattern of methylesterification was estimated as the absolute degree of blockiness (DBabs), which is the ratio of non-methylesterified units present in blocks to the total number of galacturonic acid units. Determination and modeling (based on the Langmuir adsorption model) of the adsorption isotherms of these structurally modified pectins for Zn2+ or Ca2+ allowed quantification of their maximum cation binding capacity and interaction energy. Decreasing pectin DM and increasing DBabs were shown to promote the Zn2+ or Ca2+ binding capacity of pectin, with the maximum binding capacity being mainly determined by the DM and interaction energy by DBabs. The influence of cation type was evident, with higher maximum binding capacities and interaction energies exhibited for Zn2+ compared to Ca2+, mainly due to the higher electronegativity of the former. Increased Zn2+ binding to pectin was associated with lower Zn2+ bioaccessibility and no influence of low levels of added Ca2+ was observed. However, enzymes and bile salts added during in vitro simulated digestion were shown to bind substantial amounts of Zn2+ ions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Food Hydrocolloids Elsevier

Interactions between citrus pectin and Zn2+ or Ca2+ and associated in vitro Zn2+ bioaccessibility as affected by degree of methylesterification and blockiness

Loading next page...
 
/lp/elsevier/interactions-between-citrus-pectin-and-zn2-or-ca2-and-associated-in-ieEkg0ti0q
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0268-005X
eISSN
1873-7137
D.O.I.
10.1016/j.foodhyd.2018.01.003
Publisher site
See Article on Publisher Site

Abstract

Insight into the effect of the degree and pattern of methylesterification of citrus pectin on the Ca2+ and Zn2+ adsorption capacity and the associated Zn2+ bioaccessibility was established. Pectins with comparable methylesterification degrees (DM) but different patterns of methylester distribution (blockwise or random) were generated. Blockwise distributions of methylesters were produced through controlled enzymatic means (using carrot pectin methylesterase) while random patterns were obtained through alkaline demethylesterification (using NaOH). The pattern of methylesterification was estimated as the absolute degree of blockiness (DBabs), which is the ratio of non-methylesterified units present in blocks to the total number of galacturonic acid units. Determination and modeling (based on the Langmuir adsorption model) of the adsorption isotherms of these structurally modified pectins for Zn2+ or Ca2+ allowed quantification of their maximum cation binding capacity and interaction energy. Decreasing pectin DM and increasing DBabs were shown to promote the Zn2+ or Ca2+ binding capacity of pectin, with the maximum binding capacity being mainly determined by the DM and interaction energy by DBabs. The influence of cation type was evident, with higher maximum binding capacities and interaction energies exhibited for Zn2+ compared to Ca2+, mainly due to the higher electronegativity of the former. Increased Zn2+ binding to pectin was associated with lower Zn2+ bioaccessibility and no influence of low levels of added Ca2+ was observed. However, enzymes and bile salts added during in vitro simulated digestion were shown to bind substantial amounts of Zn2+ ions.

Journal

Food HydrocolloidsElsevier

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off