Interaction mechanisms between α-Fe2O3, γ-Fe2O3 and Fe3O4 nanoparticles and Citrus maxima seedlings

Interaction mechanisms between α-Fe2O3, γ-Fe2O3 and Fe3O4 nanoparticles and Citrus maxima... The interactions between α-Fe2O3, γ-Fe2O3, and Fe3O4 nanoparticles (NPs) and Citrus maxima seedlings were examined so as to better understand possible particle applications as an Fe source for crop plants. NPs toxicity to the exposed plant was investigated as well. The α- and γ-Fe2O3 NPs were accumulated by plant root cells through diapirism and endocytosis, respectively, but translocation to the shoots was negligible. Analysis of malondialdehyde (MDA), soluble protein content, and antioxidant enzyme activity revealed that Fe deficiency induced strong oxidative stress in Citrus maxima seedlings, which followed an order of Fe deficiency>Fe3+>α-Fe2O3, γ-Fe2O3 NPs>Fe3O4 NPs. However, the chlorophyll leaf content of plants exposed to α-Fe2O3, γ-Fe2O3, Fe3O4 NPs and Fe3+ were significantly reduced by 31.1%, 14.8%, 18.8% and 22.0%, respectively, relative to the control. Furthermore, RT-PCR analysis revealed no up-regulation of AHA and Nramp3 genes in Citrus maxima roots; however, the relative FRO2 gene expression upon exposure to iron oxide NPs was 1.4–2.8-fold higher than the control. Ferric reductase activity was consistently enhanced upon iron oxide NPs exposure. These findings advance understanding of the interaction mechanisms between metal oxide NPs and plants, and provide important knowledge need for the possible application of these materials in agriculture. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Science of the Total Environment Elsevier

Interaction mechanisms between α-Fe2O3, γ-Fe2O3 and Fe3O4 nanoparticles and Citrus maxima seedlings

Loading next page...
 
/lp/elsevier/interaction-mechanisms-between-fe2o3-fe2o3-and-fe3o4-nanoparticles-and-DaQ4D7qO5w
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier B.V.
ISSN
0048-9697
eISSN
1879-1026
D.O.I.
10.1016/j.scitotenv.2017.12.276
Publisher site
See Article on Publisher Site

Abstract

The interactions between α-Fe2O3, γ-Fe2O3, and Fe3O4 nanoparticles (NPs) and Citrus maxima seedlings were examined so as to better understand possible particle applications as an Fe source for crop plants. NPs toxicity to the exposed plant was investigated as well. The α- and γ-Fe2O3 NPs were accumulated by plant root cells through diapirism and endocytosis, respectively, but translocation to the shoots was negligible. Analysis of malondialdehyde (MDA), soluble protein content, and antioxidant enzyme activity revealed that Fe deficiency induced strong oxidative stress in Citrus maxima seedlings, which followed an order of Fe deficiency>Fe3+>α-Fe2O3, γ-Fe2O3 NPs>Fe3O4 NPs. However, the chlorophyll leaf content of plants exposed to α-Fe2O3, γ-Fe2O3, Fe3O4 NPs and Fe3+ were significantly reduced by 31.1%, 14.8%, 18.8% and 22.0%, respectively, relative to the control. Furthermore, RT-PCR analysis revealed no up-regulation of AHA and Nramp3 genes in Citrus maxima roots; however, the relative FRO2 gene expression upon exposure to iron oxide NPs was 1.4–2.8-fold higher than the control. Ferric reductase activity was consistently enhanced upon iron oxide NPs exposure. These findings advance understanding of the interaction mechanisms between metal oxide NPs and plants, and provide important knowledge need for the possible application of these materials in agriculture.

Journal

Science of the Total EnvironmentElsevier

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off