Interaction between ash and soil microaggregates reduces runoff and soil loss

Interaction between ash and soil microaggregates reduces runoff and soil loss Areas subjected to fire have a two-layer system (i.e., ash and soil), which brings enormous complexities to hydrogeomorphic processes. In addition, the combinations of variables from the ash and the soil characteristics result in several possible two-layer system contexts. Here, the interactions among ash and microaggregates (i.e., ash placed over fine soil microaggregates) and their effects on hydro-erosional processes are explored. The ash was produced by an experimental fire and collected from a field managed by a slash-and-burn agricultural system. The design of the experiment included a strategy for considering combinations in which each of the various factors of interest, i.e., ash and microaggregates, was present or absent. In addition, the study searched for interactions between the two factors when both were present. In total, 600 g m2 of fine ash mixture (<0.250 mm), obtained from fire at different temperatures, and 90 g m2 of microaggregates was placed over a small splash pan (0.135 m2). Next, a rainfall of 56 mm h−1 lasting for 30 min was applied in four replicates for each treatment: 1) bare soil, 2) bare soil + microaggregates, 3) ash, and 4) ash + microaggregates. The interaction between the ash and soil microaggregates changed the soil hydrology dynamics, reducing soil moisture by 28% and surface runoff by 78%. The ash–microaggregates combination reduced soil loss by sheetwash by 20% and by rainsplash by 25%. Overall, the ash treatment increased soil loss by 47% compared to the case of bare soil. On the contrary, the ash–microaggregates interaction decreased soil loss by 26% compared to the ash treatment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Science of the Total Environment Elsevier

Interaction between ash and soil microaggregates reduces runoff and soil loss

Loading next page...
 
/lp/elsevier/interaction-between-ash-and-soil-microaggregates-reduces-runoff-and-DXYcqcDQ7M
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0048-9697
eISSN
1879-1026
D.O.I.
10.1016/j.scitotenv.2018.01.046
Publisher site
See Article on Publisher Site

Abstract

Areas subjected to fire have a two-layer system (i.e., ash and soil), which brings enormous complexities to hydrogeomorphic processes. In addition, the combinations of variables from the ash and the soil characteristics result in several possible two-layer system contexts. Here, the interactions among ash and microaggregates (i.e., ash placed over fine soil microaggregates) and their effects on hydro-erosional processes are explored. The ash was produced by an experimental fire and collected from a field managed by a slash-and-burn agricultural system. The design of the experiment included a strategy for considering combinations in which each of the various factors of interest, i.e., ash and microaggregates, was present or absent. In addition, the study searched for interactions between the two factors when both were present. In total, 600 g m2 of fine ash mixture (<0.250 mm), obtained from fire at different temperatures, and 90 g m2 of microaggregates was placed over a small splash pan (0.135 m2). Next, a rainfall of 56 mm h−1 lasting for 30 min was applied in four replicates for each treatment: 1) bare soil, 2) bare soil + microaggregates, 3) ash, and 4) ash + microaggregates. The interaction between the ash and soil microaggregates changed the soil hydrology dynamics, reducing soil moisture by 28% and surface runoff by 78%. The ash–microaggregates combination reduced soil loss by sheetwash by 20% and by rainsplash by 25%. Overall, the ash treatment increased soil loss by 47% compared to the case of bare soil. On the contrary, the ash–microaggregates interaction decreased soil loss by 26% compared to the ash treatment.

Journal

Science of the Total EnvironmentElsevier

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off