Integration of in silico approaches to determination of endocrine-disrupting perfluorinated chemicals binding potency with steroidogenic acute regulatory protein

Integration of in silico approaches to determination of endocrine-disrupting perfluorinated... A myriad of perfluorinated compounds (PFCs) have the ability to interfere with steroidogenic acute regulatory (StAR) protein. Consequently, PFCs breaches cholesterol biotransformation in mitochondria and cause fatal consequences in steroidogenesis, however, these were poorly characterized. In the present study, we have evaluated toxic potencies, nuclear mediated probabilities and interaction profiles with StAR of PFCs using computational system biology tools. Toxicity endpoints revealed that PFCs contain high carcinogenicity, developmental toxicity, skin sensitization effects with low mutagenic activity. Consensus qualitative nuclear receptor agonist models show higher probability rates towards ER and PPAR-γ receptor than AR and AhR models were observed. To poise the subtle fluctuations of actual predictions, balanced accuracy and MCC were computed, and they signify perfect correlation ranges in all models. Screening studies resulting protein-ligand interaction profiles showed that residues Asn148, Asn150, Glu169, Ala171, Arg182, Phe184, Arg188, Trp241, Thr263 and Phe267 were identified as novel hotspots, participated in halogen bonds, H-bonds, atomic π-stacking, π-cation interactions and salt-bridges formation. Thus, the additional bonds contribute conformer stability that holds the protein structure at flexible state, so that PFCs acts as a barrier to cholesterol binding. From docking outcomes, representation space was created, that specifies high and medium StAR binders were occupied in toxic endpoints space with active concern. PFCs restrain molecular features and mitochondrial membrane disruption functions were revealed by efficient toxicogenomics studies. These data indicate toxicity and StAR protein binding levels of PFCs, sorted pinpoints could be useful in a promising way to know the other environmental pollutants and health risks. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biochemical and Biophysical Research Communications Elsevier

Integration of in silico approaches to determination of endocrine-disrupting perfluorinated chemicals binding potency with steroidogenic acute regulatory protein

Loading next page...
 
/lp/elsevier/integration-of-in-silico-approaches-to-determination-of-endocrine-Z4IVwr7ez9
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Inc.
ISSN
0006-291x
D.O.I.
10.1016/j.bbrc.2017.07.168
Publisher site
See Article on Publisher Site

Abstract

A myriad of perfluorinated compounds (PFCs) have the ability to interfere with steroidogenic acute regulatory (StAR) protein. Consequently, PFCs breaches cholesterol biotransformation in mitochondria and cause fatal consequences in steroidogenesis, however, these were poorly characterized. In the present study, we have evaluated toxic potencies, nuclear mediated probabilities and interaction profiles with StAR of PFCs using computational system biology tools. Toxicity endpoints revealed that PFCs contain high carcinogenicity, developmental toxicity, skin sensitization effects with low mutagenic activity. Consensus qualitative nuclear receptor agonist models show higher probability rates towards ER and PPAR-γ receptor than AR and AhR models were observed. To poise the subtle fluctuations of actual predictions, balanced accuracy and MCC were computed, and they signify perfect correlation ranges in all models. Screening studies resulting protein-ligand interaction profiles showed that residues Asn148, Asn150, Glu169, Ala171, Arg182, Phe184, Arg188, Trp241, Thr263 and Phe267 were identified as novel hotspots, participated in halogen bonds, H-bonds, atomic π-stacking, π-cation interactions and salt-bridges formation. Thus, the additional bonds contribute conformer stability that holds the protein structure at flexible state, so that PFCs acts as a barrier to cholesterol binding. From docking outcomes, representation space was created, that specifies high and medium StAR binders were occupied in toxic endpoints space with active concern. PFCs restrain molecular features and mitochondrial membrane disruption functions were revealed by efficient toxicogenomics studies. These data indicate toxicity and StAR protein binding levels of PFCs, sorted pinpoints could be useful in a promising way to know the other environmental pollutants and health risks.

Journal

Biochemical and Biophysical Research CommunicationsElsevier

Published: Sep 30, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off