Integrating seismic and log data for improved petroleum reservoir properties estimation using non-linear feature-selection based hybrid computational intelligence models

Integrating seismic and log data for improved petroleum reservoir properties estimation using... Various petroleum reservoir properties have been estimated in literature using only one of log, seismic or production data. The recent trend in data mining is integrating multi-modal and multi-dimensional data for improved reservoir properties prediction. The objective of this paper is to employ hybrid machine learning and feature-selection based predictive models to estimate the permeability of carbonate reservoirs from integrated seismic and well log data. Hybrid models of Type-2 Fuzzy Logic System (T2FLS) and Support Vector Machine (SVM) with Functional Networks (FN) as the non-linear feature selection algorithm are proposed. Five seismic attributes were integrated with six commonly used Well logs. Data were collected from 33 oil Wells but only 17 of them had a complete matching seismic-log pair. The performance of the hybrid models were compared to those of the individual models without the non-linear but with the conventional feature selection algorithm. The comparative results showed improved prediction accuracies with the hybrid models and more excellently with the FN-SVM model. A blind test on the models revealed that the FN-SVM hybrid model gave an (R-Square) of 0.82, root mean square error of 0.46, and mean absolute error of 0.42 compared to the lowest performing T2FLS model with 0.40, 0.77 and 0.65 respectively. This demonstrates the significance of the hybrid machine learning paradigm in solving petroleum engineering problems with improved accuracies. The study presented some lessons learned from the data limitation challenges experienced in this work and proposed recommendations to chart further research directions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Petroleum Science and Engineering Elsevier

Integrating seismic and log data for improved petroleum reservoir properties estimation using non-linear feature-selection based hybrid computational intelligence models

Loading next page...
 
/lp/elsevier/integrating-seismic-and-log-data-for-improved-petroleum-reservoir-2NCgTFXk8n
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier B.V.
ISSN
0920-4105
eISSN
1873-4715
D.O.I.
10.1016/j.petrol.2016.05.019
Publisher site
See Article on Publisher Site

Abstract

Various petroleum reservoir properties have been estimated in literature using only one of log, seismic or production data. The recent trend in data mining is integrating multi-modal and multi-dimensional data for improved reservoir properties prediction. The objective of this paper is to employ hybrid machine learning and feature-selection based predictive models to estimate the permeability of carbonate reservoirs from integrated seismic and well log data. Hybrid models of Type-2 Fuzzy Logic System (T2FLS) and Support Vector Machine (SVM) with Functional Networks (FN) as the non-linear feature selection algorithm are proposed. Five seismic attributes were integrated with six commonly used Well logs. Data were collected from 33 oil Wells but only 17 of them had a complete matching seismic-log pair. The performance of the hybrid models were compared to those of the individual models without the non-linear but with the conventional feature selection algorithm. The comparative results showed improved prediction accuracies with the hybrid models and more excellently with the FN-SVM model. A blind test on the models revealed that the FN-SVM hybrid model gave an (R-Square) of 0.82, root mean square error of 0.46, and mean absolute error of 0.42 compared to the lowest performing T2FLS model with 0.40, 0.77 and 0.65 respectively. This demonstrates the significance of the hybrid machine learning paradigm in solving petroleum engineering problems with improved accuracies. The study presented some lessons learned from the data limitation challenges experienced in this work and proposed recommendations to chart further research directions.

Journal

Journal of Petroleum Science and EngineeringElsevier

Published: Sep 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial