Integrated modelling of efficient crop management strategies in response to economic damage potentials of the Western Corn Rootworm in Austria

Integrated modelling of efficient crop management strategies in response to economic damage... The spread of the Western Corn Rootworm (WCR; Diabrotica virgifera virgifera) challenges farmers in intensive maize production regions. We model efficient crop management strategies in response to economic damage potentials of the invasive WCR in Austria. A spatially explicit integrated modelling framework has been developed to calculate economic damage potentials from maize yield losses for a past (1975–2005) and a future (2010–2040) period with climate change. The economic damage potentials determine the choice of efficient crop management strategies considering insecticide applications, crop rotations with gradual maize limitations, fertilization intensities and irrigation. The integrated modelling framework includes the crop rotation model CropRota, the bio-physical process model EPIC, and the non-linear land use optimization model BiomAT. Typical crop rotations are simulated by CropRota at the municipality level. They are input to EPIC to simulate crop yields at the 1km pixel resolution, which are part of the gross margin calculations entering BiomAT. Results of economic damage potentials with a 10% maize yield loss range between 3€/ha and 180€/ha, depending on the location, and increase to between 14€/ha and 903€/ha at 50% maize yield loss. The analysis of economic damage potentials shows a high regional variability. Moreover, the model results show that a decrease in maize shares combined with moderate fertilization levels is more efficient for WCR control than insecticide use. However, further crop management strategies have to be developed in order to reduce maize yield and economic losses. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Agricultural Systems Elsevier

Integrated modelling of efficient crop management strategies in response to economic damage potentials of the Western Corn Rootworm in Austria

Loading next page...
 
/lp/elsevier/integrated-modelling-of-efficient-crop-management-strategies-in-fgfGO4UYhN
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0308-521x
D.O.I.
10.1016/j.agsy.2017.07.011
Publisher site
See Article on Publisher Site

Abstract

The spread of the Western Corn Rootworm (WCR; Diabrotica virgifera virgifera) challenges farmers in intensive maize production regions. We model efficient crop management strategies in response to economic damage potentials of the invasive WCR in Austria. A spatially explicit integrated modelling framework has been developed to calculate economic damage potentials from maize yield losses for a past (1975–2005) and a future (2010–2040) period with climate change. The economic damage potentials determine the choice of efficient crop management strategies considering insecticide applications, crop rotations with gradual maize limitations, fertilization intensities and irrigation. The integrated modelling framework includes the crop rotation model CropRota, the bio-physical process model EPIC, and the non-linear land use optimization model BiomAT. Typical crop rotations are simulated by CropRota at the municipality level. They are input to EPIC to simulate crop yields at the 1km pixel resolution, which are part of the gross margin calculations entering BiomAT. Results of economic damage potentials with a 10% maize yield loss range between 3€/ha and 180€/ha, depending on the location, and increase to between 14€/ha and 903€/ha at 50% maize yield loss. The analysis of economic damage potentials shows a high regional variability. Moreover, the model results show that a decrease in maize shares combined with moderate fertilization levels is more efficient for WCR control than insecticide use. However, further crop management strategies have to be developed in order to reduce maize yield and economic losses.

Journal

Agricultural SystemsElsevier

Published: Oct 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off