Insights into complex rheological behaviour of carbon fibre/PEEK from a novel numerical methodology incorporating fibre friction and melt viscosity

Insights into complex rheological behaviour of carbon fibre/PEEK from a novel numerical... A recent rheological study of carbon-fibre-reinforced PEEK (CF/PEEK) demonstrated highly complex behaviour, involving phenomenological differences at low and high strain rates. To explain the behaviour, it was hypothesised that CF/PEEK responds as a yield-stress fluid at low strain rates, with boundary-lubricated, fibre-fibre friction determining the viscosity, and as a viscous fluid at high strain rates, with polymer melt viscosity dominating the response. In this paper, a novel finite-element methodology, incorporating fibre friction and melt viscosity in the same model, is employed to study this hypothesis. Two-fibre models investigate how fibre friction and melt viscosity combine to produce an overall composite viscosity. Representative-volume-element (RVE) models examine multi-fibre/melt response, and demonstrate that inclusion of fibre friction produces the observed yield-stress behaviour at low strain rates, and viscous behaviour at high strain rates. Another phenomenon which affects rheological measurements of such composites is shear banding in the sample, which occurs in the yield-stress regime. This effect is demonstrated in the models, and analysis of load transfer between fibres and melt explains how it arises, and how it leads to diminished values of measured viscosity. The results pave the way for improved process models for high-throughput manufacturing processes such as Automated Tape Placement. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Composite Structures Elsevier

Insights into complex rheological behaviour of carbon fibre/PEEK from a novel numerical methodology incorporating fibre friction and melt viscosity

Loading next page...
 
/lp/elsevier/insights-into-complex-rheological-behaviour-of-carbon-fibre-peek-from-uR8ncc47uC
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0263-8223
eISSN
1879-1085
D.O.I.
10.1016/j.compstruct.2018.01.084
Publisher site
See Article on Publisher Site

Abstract

A recent rheological study of carbon-fibre-reinforced PEEK (CF/PEEK) demonstrated highly complex behaviour, involving phenomenological differences at low and high strain rates. To explain the behaviour, it was hypothesised that CF/PEEK responds as a yield-stress fluid at low strain rates, with boundary-lubricated, fibre-fibre friction determining the viscosity, and as a viscous fluid at high strain rates, with polymer melt viscosity dominating the response. In this paper, a novel finite-element methodology, incorporating fibre friction and melt viscosity in the same model, is employed to study this hypothesis. Two-fibre models investigate how fibre friction and melt viscosity combine to produce an overall composite viscosity. Representative-volume-element (RVE) models examine multi-fibre/melt response, and demonstrate that inclusion of fibre friction produces the observed yield-stress behaviour at low strain rates, and viscous behaviour at high strain rates. Another phenomenon which affects rheological measurements of such composites is shear banding in the sample, which occurs in the yield-stress regime. This effect is demonstrated in the models, and analysis of load transfer between fibres and melt explains how it arises, and how it leads to diminished values of measured viscosity. The results pave the way for improved process models for high-throughput manufacturing processes such as Automated Tape Placement.

Journal

Composite StructuresElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off